Structure of Mixed-Anions Tris(2-pyridylmethyl)amine Mn Complex, $\operatorname{TPAMn}\left(\eta^{2}-\mathrm{NO}_{3}\right)\left(\eta-\mathrm{ClO}_{4}\right)$

Bok-Kyu Shin, Mihyang Kim, and Jaehong Han*
Metalloenzume Research Group, BET Research Institute and Department of Biotechnologv, Chung-Ang Cmversity, Anseong 456-756, Korea. ${ }^{*}$ E-mail: jaehonghacau.ac.kr
Recened December 7, 2006

Abstract

Mononuclear mixed-anions Mn complex of TPAMn $\left(\eta-\mathrm{NO}_{3}\right)\left(\eta-\mathrm{ClO}_{4}\right)$. where TPA is tris(2-pyridylmethyl)amine, has been synthesized and characterized. The neutral TPAMn $\left.\eta-\eta_{-}-\mathrm{NO}_{2}\right)\left(\eta-\mathrm{ClO}_{4}\right)$ was obtained from the reaction between $\mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ and $\left[\mathrm{H}_{3} \mathrm{TPA}\right]\left(\mathrm{ClO}_{4}\right)_{3}$ in MeOH . X-ray crystallographic structure of mononuclear TPAMnn($\left.\hat{\eta}-\mathrm{NO}_{3}\right)\left(\eta-\mathrm{ClO}_{4}\right)$ complex showed a seven-coordinated geometry with a tripodal tetradentate TPA. a terminal perchlorate and an $\hat{\tau}$-bound nitrate.

Key Words : Mixed-anions. Seven-coordinated manganese complex, Tripodal ligand. Crystal structure, Nitrate binding

Introduction

Manganese centers play important roles in biological system and various nuclearities of Mn cores are found in the active sites of the enzymes. ${ }^{1}$ For examples. manganese catalase contains a dinuclear Mn center in the active site. and catalyzes dismutation of hydrogen peroxide into water and oxygen molecules. ${ }^{2}$ Arginase with a similar dinuclear Mn active center shows an activity of arginine hydrolysis to the ornithine and urea. ${ }^{3}$ Oxygen-evolving complex of photosystem II contains tetranuclear manganese cluster for water oxidation. ${ }^{4.5}$ There are also many enzymes with mononuclear manganese active center. manganese superoxide dismutase. manganese peroxidase. and relatively unknown integrase. Manganese-superoxide dismutase has a mononuclear manganese center with trigonal bipyramidal coordination geometry and detoxifies reactive oxygen species. ${ }^{67}$ Manganese peroxidase involved in lignin degradation oxidizes octahedral $\mathrm{Mn}(\mathrm{II})$ ion to form the $\mathrm{Mn}(\mathrm{III})$-organic acid complexes. ${ }^{8}$ Integrase involved in the retroviral replication cycle of human immunodeficiency virus. has a mononuclear manganese center with octahedral coordination geometry. ${ }^{9}$ These manganese centers interact with various ligands for their activities. including oxo. hydrovo water. superoxide anion. hydrogen peroxide and molecular oxygen. Such versatile ligand binding. coordination geometries. and catalytic activities of Mn complexes are of a great interest. ${ }^{\text {10.11 }}$

Due to the easy preparation and versatile coordination chemistry: TPA (tris(2-pyridylmethyl)amine) has been used as a popular biomimetic ligand. Various alkali metal and transition metal complexes of TPA were synthesized and used for biological model systems, such as dioxygen activation by iron non-heme oxygenases. ${ }^{12}$ Although many TPA manganese complexes have been reported ${ }^{13-16}$ the complexes with weak anionic terminal ligands are rare. ${ }^{17}$ Especially. the complex with mixed-anionic terminal ligands has never been reported to our knowledge. Here we report the synthesis and X-ray cry'stallographic structure of the $\operatorname{TPAMn}\left(\eta-\mathrm{NO}_{3}\right)(\eta-$
ClO_{4}) complex. The catalytic activity of hydrogen peroxide dismutation of the $\operatorname{TPAMn}\left(\eta^{2}-\mathrm{NO}_{3}\right)\left(\eta-\mathrm{ClO}_{4}\right)$ complex also has been carried out.

Experimental

General. All experiments and reactions were carried out under air. All solvents were purified using standard methods before each use. ${ }^{18} \mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ was purchased from Aldrich and used without further purification. $\mathrm{H}_{3} \mathrm{TPA}\left(\mathrm{ClO}_{4}\right)_{3}$ was prepared from the published method. ${ }^{19}$ FT-IR spectra were collected on a Nicolet DX V. 4.56 FT-IR spectrometer in KBr pellets and the spectra were corrected for background. Elemental analyses were performed in the Microanalytical Laboratory at the University of Michigan. The data were corrected using acetanilide as a standard.

Catalytic study. In 20 mL vial with a stirring bar. Mn complex was dissolved in 3.0 mL of MeCN under dinitrogen to make 0.1 mM solution. The vial was sealed with septum. and connected to the gas volume measurement apparatus through double-ended needle. The catalysis was initiated by introducing $18 \% \mathrm{H}_{2} \mathrm{O}_{2}$ solution using syringe. The amount of product formation was calculated from the volume of oxygen gas generated using the ideal-gas equation. The substrate concentration vs. initial velocity graph was obtained from four independent measurements at each substrate concentration.
$\operatorname{TPAMn}\left(\eta^{2}-\mathrm{NO}_{3}\right)\left(\eta-\mathrm{ClO}_{4}\right) . \mathrm{Mn}\left(\mathrm{NO}_{2}\right)_{2}+4 \mathrm{H}_{2} \mathrm{O}(0.15 \mathrm{~g} .0 .6$ numol) in $\mathrm{MeOH}(2 \mathrm{~mL}$) was added to 3 mL of methanol solution of $\mathrm{H}_{3} \mathrm{TPA}\left(\mathrm{ClO}_{4}\right)_{3}(0.355 \mathrm{~g} .0 .6 \mathrm{mmol})$ and NEt_{3} $(0.251 \mathrm{~mL} .1 .8 \mathrm{mmol})$. The reaction mixture was stirred for two hours at room temperature. Diethyl ether was added into the reaction mixture and yellow oil was formed in a few days. The solvent was removed by decanting and the oil was dried under vacuum. It was redissolved in 3 mL of MeOH and solvent diffusion by the ethyl ether produced transparent crystals in a day. TPAMn $\left(\eta^{2}-\mathrm{NO}_{3}\right)\left(\eta-\mathrm{ClO}_{4}\right)(150 \mathrm{mg} .0 .295$ nmol. 49%). FT-IR $\left(\mathrm{KBr} . \mathrm{cm}^{-1}\right) v\left(\mathrm{CAr}_{\mathrm{Ar}}-\mathrm{H}\right): 3079(w), v(\mathrm{C}-$
H): 2862(w). $v(C=N): 1609(\mathrm{~s}), v\left(\mathrm{NO}_{3}\right): 1483(\mathrm{~m}), 1467(\mathrm{~s})$. and $817(\mathrm{w}) . v\left(\mathrm{ClO}_{4}\right) ; 1118(\mathrm{~s})$ and $1102(\mathrm{vs})$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{ClMnN}_{5} \mathrm{O}_{7}$ (MW 506.756): $\mathrm{C}, 42.66 ; \mathrm{H}, 3.58 ; \mathrm{N}$. 13.82. Found: C. 42.62: H. 3.56. N. 13.76.

X-ray Crystallography. Transparent irregular-shaped crystals of $\operatorname{TPAMn}\left(\eta^{2}-\mathrm{NO}_{3}\right)\left(\eta-\mathrm{ClO}_{4}\right)$ were obtained from the mother liquor by solvent diffusion after several days. The diffraction data was collected at $123(2) \mathrm{K}$ using a Bruker SMART area diffractometer equipped with a monochromator in the Mo $\mathrm{K} \alpha(\hat{\lambda}=0.71073 \mathrm{~A})$ incident beam. The CCD data were integrated and scaled using the BrukerSAINT software package. ${ }^{\langle(i}$ and the structure was solved and refined using SHEXTL V5.10.21 The crystal data and structural parameters are shown in Tables 1 and Table 2. The structure was solved by direct methods to locate heary atoms. and the nonhydrogen atoms were located through subsequent difference Fourier syntheses. Structural refinement was carried out by full-matrix least squares on F^{2}. All non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were located in the calculated positions

Results and Discussion

The similar $\operatorname{TPAMn}\left(\eta-\mathrm{NO}_{3}\right)\left(\eta-\mathrm{NO}_{3}\right)$ complex was synthesized from the reaction between TPA and $\mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ in $\mathrm{MeOH} \cdot{ }^{17}$ By substituting TPA with $\mathrm{H}_{3} \mathrm{TPA}\left(\mathrm{ClO}_{4}\right)_{3}$. mixedanions TPAMn $\left(\eta^{2}-\mathrm{NO}_{3}\right)\left(\eta-\mathrm{ClO}_{4}\right)$ was achieved. The nitrate

Table 1. Crystal data and structure refinement for TPAMn(η^{2} $\mathrm{NO}_{3}\left(r_{1} \mathrm{ClO}_{4}\right)$

Empirical tormula	$\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{ClMnN}_{5} \mathrm{O}-$
Fonnula weight	506.76
Temperature	123(2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, $\mathrm{P} 2_{1} / \mathrm{c}$
Unit cell dimensions	$a=14.140(4) \AA$
	$b=9.161(3) \AA$
	$c=16.082(5) \AA$
	$\beta=90.795(5)^{\circ}$
Volume	2083.1(11) A^{3}
L, Calculated density	$4,1.616 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.815 \mathrm{~mm}^{-1}$
F(000)	1036
Crystal size	$0.48 \times 0.44 \times 0.44 \mathrm{~mm}$
θ range for data collection	2.53 to 28.33°
Limiting indices	$-18 \leq h \leq 18$
	$-12 \leq k \leq 12$
	$-21 \leq 1 \leq 21$
Keflections collected/ unique	$45087 / 5176$
K(int)	0.0290
Completeness to theta	28.33°, 99.4%
Absorption correction	Semi-mpinical
Retinement method	Full-matrix least-syuares on $\mathrm{F}^{\text {- }}$
Data / restraints / parameters	5176/0/361
Goodness-of-fit on $\mathrm{F}^{\text {- }}$	1.041
Final R indices $[\mathrm{I}>2$ sigma(I)]	$\mathrm{R} 1=0.0262, \mathrm{wR} 2=0.0767$
R indices (all data)	$\mathrm{R} 1=0.0285, \mathrm{wR} 2=0.0780$
Largest diff. peak and hole	0.371 and $-0.700 \mathrm{e} . \mathrm{A}^{-3}$

group at $1483 \mathrm{~cm}^{-1} .1467 \mathrm{~cm}^{-1}$ and $817 \mathrm{~cm}^{-1}$. and the perchlorate group at $1118 \mathrm{~cm}^{-1}$ and $1102 \mathrm{~cm}^{-1}$ were observed from IR spectrum. It appears fonmation of the complex is favored in the presence of perchlorate ion during the reaction or crystallization process.

Solid state structure of $\operatorname{TPAMn}\left(\eta^{2}-\mathrm{NO}_{3}\right)\left(\eta-\mathrm{ClO}_{4}\right)$ complex has been characterized by single crystal X-ray crystallography at $123(2) \mathrm{K}$. It was crystallized in the monoclinic $P 2_{1} / c$ space group (Table 1). The neutral Mn complex is a seven-coordinate $\mathrm{Mn}(\mathrm{II})$ complex with two teminally bound η^{\prime}-nitrate and η-perchlorate anions (Figure 1, Table 2). The

Figure 1. Crystallographic structure of $\mathrm{TPAMn}\left(\eta-\mathrm{NO}_{3}\right)\left(\eta-\mathrm{ClO}_{4}\right)$ with themal ellipsoids (50% probability); hydrogen atoms omitted for clarity.

Table 2. Selected bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for TPAMn $\left(r T^{-}\right.$-$\left.\mathrm{NO}_{3}\right)\left(n-\mathrm{ClO}_{4}\right)$

$\mathrm{Mn}(1)-\mathrm{N}(1)$	$2.2538(12)$	$\mathrm{N}(3)-\mathrm{Mn}(1)-\mathrm{N}(1)$	$129.17(4)$
$\mathrm{Mn}(1)-\mathrm{N}(2)$	$2.2680(13)$	$\mathrm{N}(3)-\mathrm{Mn}(1)-\mathrm{O}(1)$	$138.79(4)$
$\mathrm{Mn}(1)-\mathrm{N}(3)$	$2.2288(13)$	$\mathrm{N}(1)-\mathrm{Mn}(1)-\mathrm{O}(1)$	$85.23(4)$
$\mathrm{Mn}(1)-\mathrm{N}(4)$	$2.3559(12)$	$\mathrm{N}(3)-\mathrm{Mn}(1)-\mathrm{N}(2)$	$92.82(4)$
$\mathrm{Mn}(1)-\mathrm{O}(1)$	$2.2573(12)$	$\mathrm{N}(1)-\mathrm{Mn}(1)-\mathrm{N}(2)$	$111.50(4)$
$\mathrm{Mn}(1)-\mathrm{O}(2)$	$24290(12)$	$\mathrm{O}(1)-\mathrm{Mn}(1)-\mathrm{N}(2)$	$93.77(4)$
$\mathrm{Mn}(1)-\mathrm{O}(4)$	$2.4071(11)$	$\mathrm{N}(3)-\mathrm{Mn}(1)-\mathrm{N}(4)$	$74.39(5)$
$\mathrm{Cl}(1)-\mathrm{O}(4)$	$1.4718(10)$	$\mathrm{N}(1)-\mathrm{Mn}(1)-\mathrm{N}(4)$	$71.91(4)$
$\mathrm{Cl}(1)-\mathrm{O}(5)$	$1.4409(11)$	$\mathrm{O}(1)-\mathrm{Mn}(1)-\mathrm{N}(4)$	$145.80(4)$
$\mathrm{Cl}(1)-\mathrm{O}(6)$	$1.4267(12)$	$\mathrm{N}(2)-\mathrm{Mn}(1)-\mathrm{N}(4)$	$72.48(4)$
$\mathrm{Cl}(1)-\mathrm{O}(7)$	$1.4293(12)$	$\mathrm{N}(3)-\mathrm{Mn}(1)-\mathrm{O}(4)$	$82.38(4)$
$\mathrm{O}(1)-\mathrm{N}(5)$	$1.2731(15)$	$\mathrm{N}(1)-\mathrm{Mn}(1)-\mathrm{O}(4)$	$80.01(4)$
$\mathrm{O}(2)-\mathrm{N}(5)$	$1.2656(16)$	$\mathrm{O}(1)-\mathrm{Mn}(1)-\mathrm{O}(4)$	$82.71(4)$
$\mathrm{O}(3)-\mathrm{N}(5)$	$1.2296(15)$	$\mathrm{N}(2)-\mathrm{Mn}(1)-\mathrm{O}(4)$	$167.74(4)$
$\mathrm{O}(1)-\mathrm{N}(5)-\mathrm{O}(2)$	$116.53(11)$	$\mathrm{N}(4)-\mathrm{Mn}(1)-\mathrm{O}(4)$	$116.57(4)$
$\mathrm{O}(1)-\mathrm{N}(5)-\mathrm{O}(3)$	$121.06(12)$	$\mathrm{N}(3)-\mathrm{Mn}(1)-\mathrm{O}(2)$	$84.94(5)$
$\mathrm{O}(2)-\mathrm{N}(5)-\mathrm{O}(3)$	$122.40(11)$	$\mathrm{N}(1)-\mathrm{Mn}(1)-\mathrm{O}(2)$	$137.11(4)$
$\mathrm{O}(5)-\mathrm{Cl}(1)-\mathrm{O}(6)$	$109.32(7)$	$\mathrm{O}(1)-\mathrm{Mn}(1)-\mathrm{O}(2)$	$54.72(4)$
$\mathrm{O}(4)-\mathrm{Cl}(1)-\mathrm{O}(5)$	$109.70(6)$	$\mathrm{N}(2)-\mathrm{Mn}(1)-\mathrm{O}(2)$	$88.14(4)$
$\mathrm{O}(4)-\mathrm{Cl}(1)-\mathrm{O}(6)$	$108.14(6)$	$\mathrm{N}(4)-\mathrm{Mn}(1)-\mathrm{O}(2)$	$150.55(4)$
$\mathrm{O}(4)-\mathrm{Cl}(1)-\mathrm{O}(7)$	$108.75(7)$	$\mathrm{O}(4)-\mathrm{Mn}(1)-\mathrm{O}(2)$	$80.23(4)$

Figure 2. The two possible coordination geometries for the sevencoordinate TPAMni $\left.\eta \cdot-\mathrm{NO}_{3}\right)\left(\eta-\mathrm{ClO}_{4}\right)$ complex: A, pentagonal bipyramid; B , capped octahedron.
coordination geometry around Mn atom can be considered as a distorted pentagonal bipyramid or a distorted capped octahedron (Figure 2). For the pentagonal bipyramidal coordination geometry (Figure 2A), the $N(2)$ and O (4) atoms form axial ligands. The other five atoms are bound to Mn center as pentagonal equatorial ligands. The distances of $\mathrm{Mn}(1)-\mathrm{N}(2)$ and $\mathrm{Mn}(1)-\mathrm{O}(4)$ bonds are found at 2.2680 (13) \AA and 2.4071 (11) A respectively. The axial angle between these two ligands is $167.74(4)^{\circ}$ and distorted from the ideal 180°. The $\mathrm{N}(4)$ atom becomes the axial ligand of the distorted capped octahedral coordination geometry, while the other six atoms form the octahedron (Figure 2B). Two $\mathrm{N}(1)-\mathrm{N}(2)-\mathrm{N}(3)$ and $\mathrm{O}(1)-\mathrm{O}(2)-\mathrm{O}(4)$ trigonal planes fom the base of octahedron. These possible two coordination geometries show easy interconversions of seven-coordinated complexes. ${ }^{2}$

TPA ligand is bound to the $\mathrm{Mn}(1)$ in a tetradentate mode. with bond distances of 2.2538 (12) A. 2.2680 (13) A. 2.2288 (13) A and 2.3559(12) A for $\mathrm{Mn}(1)-\mathrm{N}(1) . \mathrm{Mn}(1)-\mathrm{N}(2)$. $\mathrm{Mn}(1)-\mathrm{N}(3)$. and $\mathrm{Mn}(1)-\mathrm{N}(4)$, respectively. The average $\mathrm{Mn}-\mathrm{N}$ distance ${ }^{33}$ of 2.277 (14) A implies a possible high spin configuration of the TPAMn $\left(\eta^{2}-\mathrm{NO}_{3}\right)\left(\eta-\mathrm{ClO}_{4}\right)$ complex. ${ }^{24}$ The nitrate group is bound to $\mathrm{Mn}(\mathrm{I})$ atom in $\hat{\eta}$-fashion with distances of $2.2573(12) A$ and $2.4290(12) A$ for $\mathrm{Mn}(1)-\mathrm{O}(1)$ and $\mathrm{Mn}(1)-\mathrm{O}(2)$. respectively. The difference between these two distances is 0.1717 A (parameter a). The distance of $\mathrm{Mn}(1)-\mathrm{N}(5)$ is found at 2.745 A and the difference between $\mathrm{Mn}(1)-\mathrm{N}(5)$ and $\mathrm{Mn}(1)-\mathrm{O}(2)$ is 0.316 A (parameter b). The angles of $\mathrm{Mn}(1)-\mathrm{O}(1)-\mathrm{N}(5)$ and $\mathrm{Mn}(1)-\mathrm{O}(2)-\mathrm{N}(5)$ are found at $98.19(8)^{\circ}$ and $90.31(7)^{\circ}$. respectively. and the difference is 7.88° (parameter \cdot). Anisobidentate and bidentate mode are possible for the η-nitrate and these parameters are the criteria to determine the binding mode of nitrate ligand ${ }^{3}$ Parameter a is smaller than $0.3 \AA$. parameter b is greater than 0.2 A . and parameter \mathfrak{c} is smaller than 14°. Accordingly. binding mode of nitrate ligand was assigned to bidentate. The perchlorate group is bound to the $\mathrm{Mn}(1)$ center in an η geometry.
The O_{2} formation by the $\mathrm{TPAMn}\left(\eta \cdot \mathrm{NO}_{3}\right)\left(\eta-\mathrm{ClO}_{4}\right)$ complex was measured by the O_{2} gas volume. The complex dismutated hydrogen peroxide catalytically. The substrate

Figure 3. Reaction rate of O_{2} generation by the $\operatorname{TPAMn}\left(\eta^{-}-\right.$ $\left.\mathrm{NO}_{3}\right)\left(\eta-\mathrm{ClO}_{4}\right)$ complex. The bars represent ranges of experimental data. The data were simulated with Hill equation and represented as a solid line.
vs. initial velocity plot is shown at Figure 3. Because the catalysis followed sigmoidal kinetics, the plot was fitted with Hill equation ${ }^{26}$ Sigmoidal kinetics is usually observed from the multi-subunit enzyme catalysis or from the sub-strate-dependent enzyme activation. ${ }^{27}$ In case of the TPAMn $\left(\eta-\mathrm{NO}_{3}\right)\left(\eta-\mathrm{ClO}_{4}\right)$ complexes. substrate-activation of the catalyst seems to be the reason for the observed sigmoidal kinetics. Its K_{M} and $k_{\text {cat }}$ are $1.26 \pm 0.03 \mathrm{M}$ and 0.92 ± 0.02 s^{-1}, respectively, with Hill constant of 6.3 ± 0.9. The active Mn catalase was reported to show $260000 \mathrm{~s}^{-1}$ of $k_{\text {cat }}{ }^{-8}$ It is highly likely that the anionic teminal ligands can be dissociated from the Mn center during the catalysis. and which allows $\mathrm{H}_{2} \mathrm{O}_{2}$ binding to the Mn center. Currently. it is not clear whether the complex goes through dimerization to form the Mn catalase-like catalyst. The reaction velocity was linearly dependent on the concentration of the complex. It indicates the dimerization step. even it does occur is not a rate limiting step for the catalysis.
In summary. the $\mathrm{TPAMn}\left(\eta^{2}-\mathrm{NO}_{3}\right)\left(\eta-\mathrm{ClO}_{4}\right)$ complex has been synthesized and structurally characterized. The complex was characterized as a high spin $d \dot{d}$ complex based on the structural parameters. Catalytic study suggested the nitrate and perchlorate ligands are labile under the catalytic conditions.

Acknowledgment. This work was supported by the Korean Research Foundation Grant (KRF-2006-331-F00015) funded by the Korean Govenment (MOEHRD).

Supplementary data. Crystallographic data for the structure reported here have been deposited with Cambridge Crystallographic Data Center (Deposition No. CCDC 629936). The data can be obtained free of charge via www.ccds.cam. ac.ul/conts/retrieving.html (or from the CCDC. 12 Union Road. Cambridge CB2 lEZ. UK: fax: +441223 336033: e-mail: deposit $\bar{a} c c d c . c a m . a c . u k)$.

References

1. Horsburgh. M. T.: Whaton. S. J.: Karavolos. M.: Foster. S. J.

Trends Aficrobiol. 2002. 10. 496.
2. Whittaker. M. M.: Barynin. V. V.: Antonyuk. S. V.: Whittaker. J. W. Biochemistry 1999.38.9126.
3. Kanyo. Z. F.: Scolnick. L. R.: Ash. D. E.: Christianson. D. W. Wature 383. 554.
4. Balsera. M.; Arellano. I. B.; Revuelta, J. L.: Rivas. I.: Hermoso. I. A. J. MFol. Biol. 2005, 350.1051.
5. Ferreira. K. N.: Iverson. T. M.: Maghlaoui. K.: Barber. J.: Iwata. S. Science 2004. 303. 1831.
6. Dennis. R. J.: Micossi. E.: McCarthy. J.: Moe. E.: Gordon. E. I.: Kozielski-Stuhrmann, S.: Leonard, G. A.; McSweeney, S. Acta Cyst.F2006, 62, 325.
7. Atzenhofer, W.: Regelsberger. G.; Jacob. U.; Peschek, G. A.: Furtmüller. P. G.: Huber. R.: Obinger. C. J. Afol Biol. 2002. 331. 479.
8. Sundaramoorthy. M.: Youngs. H. L.: Gold. M. H.: Poulos. T. L. Biochemistry 2005. 4.4 .6463.
9. Bujacz. G; Jaskolski. M.; Alexandratos, I. Wlodawer. A.; Merkel. G.: Katz, R. A.: Skalka, A. M. Structure 1996. 4.89.
10. Liu. Z.-X.: Cho. M.-W.: Baeg. J.-O.: Lee. C. W. Bull. Korean Chem. Soc. 2006, 27, 2064.
11. Baik. J. S.: Lee. N. H. Bull. Korean Chem. Soc. 2006. 27. 765.
12. Canary. J. W.: Wang. Y.: Rov. Jr, R. Inorg. Symb. 1998, 32.70.
13. Towle. D. K.; Botsford C. A.; Hodgson, D. I. horg. Chim. Acta 1988, 1H1, 167.
14. Xiang. D. F.: Duan. C. Y.: Tan. X. S.: Liu. Y. L.: Tang. W. X. Potvhedron 1998.17. 2647.
15. Oshio, H.: Ino. E.: Mogi. I:: Ito, T. Ahorg Chem. 1993, 32.5697.
16. Gultneh, Y.: Farooq, A.; Karlin, K. D.: Liu, S.; Zubieta. J. Ihorg.

Chim Acta 1993. 211, 171.
17. Baldeaut S. M.: Slinn. C. H.: Krebs. B.: Rompel. A. Inorg. Chim. Acta 2004. 357.3295.
18. Perrin. D. D.: Armarego. W. L. F. Purification of Laboratory Chemicals, 3rd ed.; Pergamon: New York, 1988.
19. Mandel. J. B.: Maricondi. C.: Douglas. B. E. Horg. Chem. 1988. 27. 2990
20. Bruker SMLART and SAINT. Bruker AXS Inc.: Madison. Wisconsin. USA. 1997.
21. Bruker SHELUTL. Version 5.10: Bruker AXS Inc.: Madison. Wisconsin. USA. 1998.
22. Cotton. F. A.: Wilkinson, G.: Murillo, C. A.: Bochmann. M. In Advanced Inorganic Chemisty 6th ed.; Wiley-Interscience: New York. 1999: p 7.
23. The number in the parenthesis of average bond distances represents the larger of the individual standard deviations or the standard deviation from the mean. $\sigma=\operatorname{SQRT}\left[\sum_{,=1}^{n}(\mathrm{x},-\mathrm{x})^{2}\right.$; $n(n-1)]$, where x_{i} is an individual standard deviation. x is the average of individual standard deviations.
24. Zang. Y.: Kim. J.: Dong. Y.: Wilkinson. E. C.: Appelman. E. H.: Que. L.. Jr. J. Am. Chem. Soc. 1997. 119.4197.
25. Kleywegt. G. J.: Wiesmeijer. W. G. R.: Van Driel. G. J.: Driessen. W. L., Reedijk, J.; Noordik. J. H. Dahon Trans. 1985.2177.
26. Hill equation, $v_{i}=\mathrm{F}_{\text {max }} \cdot\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]^{n}\left(\mathrm{Kin}^{n}+\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]^{n}\right)$, where v_{i}; initial velocity. $\Gamma_{\text {max }}$: maximum velocity. $\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$: concentration of substrate. n : Hill constant. K_{y}. Michaelis constant.
27. Kuby. S. A. A Study of Enzunes. Vel. 1: CRC Press: Florida. 1991.
28. Shank. M.; Barynin. V.: Dismukes. G. C. Biochemisty 1994. 33. 15433.

