DOI QR코드

DOI QR Code

Lyotropic Behaviors of a Phospholipid-based Lamella Liquid Crystalline Phase Hydrated by Propylene Glycol as a Polar Solvent: Correlation of DSPC vs PG Concentration

  • Jeong, Tae-Hwa (Department of Chemical Engineering, Korea Kolmar Corporation) ;
  • Oh, Seong-Geun (Department of Chemical Engineering, Hanyang University)
  • Published : 2007.01.20

Abstract

The lyotropic behaviors to form the structure of distearoylphosphatidylcholine (DSPC)-based liquid crystal (LC) hydrated by only propylene glycol (PG) without water were examined by differential scanning calorimetry (DSC), X-ray diffractions (XRD), polarized microscope (PM) and transmission electron microscope (TEM). By increasing the amount of PG instead of water, it showed the phase transition to be gradually changed from anisotropic structures to other structures more close to isotropic ones and their appearance to be changed from solid-like states to liquid-like ones with more fluidity. Below 50% w/w PG, the mixtures of DSPC and PG resulted in no direct observation of LC structure through PM because they were very close to solid-states. From 55% w/w to 90% w/w of PG, the dense lamella crystalline structures were observed through PM, and their thickness and area decreased as the content of PG increased. Measured by DSC with heating process, the main phase transition from α -lamella phase to isotropic phase appeared from 52.89 °C to 47.41 °C to show linearly decreasing behaviors because PG affects the hydrophobic region of DSPC-based lamella phase. The repeating distance of the lamella phase and the interlayer distance between bilayers were calculated with XRDs and the average number of bilayers related to the thickness in LC structure was approximately estimated by combining with TEM results. The WAXS and DSC measurements showed that all of PG molecules contributed to swelling both the lipid layer in the edge region of lamella phase close to phosphate groups and the interlayer between bilayers below 90% w/w of PG. The phase and thermal behaviors were found to depend on the amount of PG used by means of dissolving DSPC as a phospholipid and rearranging its structure. Instead of water, the inducement of PG as a polar solvent in solid-lamella phase is discussed in terms of the swelling effect of PG for DSPC-based lamella membrane.

Keywords

References

  1. Wertz, P. W.; Dowing, D. T. Stratum Corneum: Biological and Biochemical Considerations in Transdermal Drug Delivery; Hadgraft, J.; Guy, R. H., Eds.; Marcel Dekker: New York, 1989; pp 1-17
  2. Potts, R. O.; Guy, R. H. Pharm. Res. 1992, 9, 663 https://doi.org/10.1023/A:1015810312465
  3. Storm, G.; Oussoren, C.; Peeters, P. A. M. Safety of Liposome Administration in Membrane Lipid Oxidation; Vigo-Pelfrey, C., Ed.; CRC Press: Boca Raton, FL, 1991; Vol III, p 239
  4. Becher, P. Emulsion: Theory and Practice; R. E. Krieger Publishing: Malabar, FL, 1985
  5. Davis, S. S.; Hadgraft, J.; Palin, K. J. In Encyclopedia of Emulsion Technology; Becher, P., Ed.; Mercel Dekker: 1983; Vol 2, p 159
  6. Barry, B. W. J. Control Release 1987, 6, 85 https://doi.org/10.1016/0168-3659(87)90066-6
  7. Sheth, N. V.; Freeman, D. J.; Higuchi, W. I.; Spruance, S. L. Int. J. Pharm. 1986, 28, 201 https://doi.org/10.1016/0378-5173(86)90246-2
  8. Nicolazzo, J. A.; Morgan, T. M.; Reed, B. L.; Finnin, B. C. J. Controlled Release 2005, 103, 577 https://doi.org/10.1016/j.jconrel.2004.12.007
  9. Lim, P. F. C.; Liu, X. Y.; Kang, L.; Ho, P. C. L.; Chan, Y. W.; Chan, S. Y. Int. J. Pharm. 2006, 311, 157 https://doi.org/10.1016/j.ijpharm.2005.12.042
  10. Fang, J. Y.; Hwang, T. L.; Leu, Y. L. Int. J. Pharm. 2003, 250, 313 https://doi.org/10.1016/S0378-5173(02)00540-9
  11. Bonina, F. P.; Carelli, V.; Colo, G. D.; Montenegro, L.; Nannipieri, E. Int. J. Pharm. 1993, 100, 41 https://doi.org/10.1016/0378-5173(93)90073-O
  12. Zbytovska, J.; Kiselev, M. A.; Funari, S. S.; Garamus, V. M.; Wartewig, S.; Neubert, R. Chemistry and Physics of Lipids 2005, 138, 69 https://doi.org/10.1016/j.chemphyslip.2005.08.004
  13. Hou, S. Y.; Mitra, A. K.; White, S. H.; Menon, G. K.; Ghadially, R.; Elias, P. J. Invest. Dermatol. 1991, 96, 215 https://doi.org/10.1111/1523-1747.ep12461361
  14. van den Bergh, B. A. I.; Swarzendruber, D. C.; Bos-van der Geest, A. J. Microsc. 1997, 187, 125
  15. Kodama, M.; Aoji, H.; Takahashi, H.; Hatta, I. Biochem. Biophys. Acta 1997, 1329, 61 https://doi.org/10.1016/S0005-2736(97)00086-2
  16. McIntosh, T. J.; Simon, S. A. Biochemistry 1986, 25, 4948 https://doi.org/10.1021/bi00365a034
  17. Wiener, M. C.; Suter, R. M.; Nagle, J. F. Biophys. J. 1989, 55, 315 https://doi.org/10.1016/S0006-3495(89)82807-3
  18. Wiener, M. C.; King, G. I.; White, S. H. Biophys. J. 1991, 60, 568 https://doi.org/10.1016/S0006-3495(91)82086-0
  19. Klose, G.; Konig, B.; Meyer, H. W.; Schulze, G.; Degovics, G. Chemistry and Physics of Lipids 1988, 47, 225 https://doi.org/10.1016/0009-3084(88)90015-1
  20. de Vringer, T.; Joosten, J. G. H.; Junginger, H. E. Colloid & Polymer Science 1987, 265, 167 https://doi.org/10.1007/BF01412761
  21. Glatter, O.; Kratky, O. Small Angle X-Ray Scattering; Academic Press: New York, 1982
  22. Jimenez-Monreal, A. M.; Villalain, J.; Aranda, F. J.; Gomez- Fernandez, J. C. Biochimica et Biophysuca Acta 1998, 1373, 209
  23. Chapman, D.; Williams, R. M.; Ladbrooke, B. D. Chem. Phys. Lipids 1967, 1, 445 https://doi.org/10.1016/0009-3084(67)90023-0

Cited by

  1. Stabilization of Distearoylphosphatidylcholine Lamellar Phases in Propylene Glycol Using Cholesterol vol.10, pp.12, 2013, https://doi.org/10.1021/mp400140u
  2. Influence of the Ceramide(III) and Cholesterol on the Structure of a Non-hydrous Phospholipid-based Lamellar Liquid Crystal : Structural and Thermal Transition Behaviors vol.28, pp.6, 2007, https://doi.org/10.5012/bkcs.2007.28.6.1021
  3. Lyotropic Mesomorphisms of a Lamellar Liquid Crystalline Phase in Non-hydrous Condition: A Phospholipid Hydrated by Different Polar Solvents vol.31, pp.5, 2010, https://doi.org/10.5012/bkcs.2010.31.5.1165