Diethyl [3-Cyano-2-Oxo-3-(Triphenylphosphoranylidene)propyl]phosphonate: A Useful Horner-Wadsworth-Emmons Reagent for α-Keto (Cyanomethylene)triphenylphosphoranes from Carbonyl Compounds

Kieseung Lee
Department of Chemistry, Woostk University, Chonbuk 565-701, Korea. E-mail: kslee@woosuk.ac.kr Received August 2, 2007

Key Words : α-Keto (cyanomethylene)triphenylphosphorane, Acyl cyanophosphorane, α-Keto amide, α-Keto ester

Recently α-keto amide/ester units ${ }^{1}$ have attracted much attention in organic and medicinal chemistry due to the presence of these highly electrophilic units in many bioactive natural products and synthetic peptides. ${ }^{12}$ Among a number of synthetic routes reported recently, ${ }^{3}$ Wasserman's approach ${ }^{3 c}$ in which α-keto (cyanomethylene)triphenylphosphoranes 2 are used as the key intermediates according to Scheme 1 , stands out for its mild conditions and the outstanding convergence. Although this approach has been widely employed in the synthesis of bioactive compounds ${ }^{2 \mathrm{Cc} . \mathrm{d} 5}$ including tricarbonyls ${ }^{6 a}$ and human lipase inhibitors ${ }^{66 e}$ by us, there is a shortcoming that the key intemediates 2 can be derived only from carboxylic acids/acid chlorides. In light of that there are abundant carbonyl compounds (aldehydes/ ketones) as natural/synthesized form, it would be highly desirable to use carbonyl compounds for the synthesis of phosphoranes 2. Herein we wish to report the first direct synthesis of phosphoranes 2 from carbonyl compounds utilizing a new Homer-Wadsworth-Emmons (HWE) ${ }^{7}$ reagent 4 according to the procedures described in Scheme 2.
The requisite HWE reagent 4 was successfully prepared via two-step route: coupling of chloroacetyl chloride with phosphorane 1/BSA (N, O-Bis(trimethylsilyl)acetamide) gave 4-chloro-3-oxo-2-(triphenyl-phosphoranylidene)butanenitrile, ${ }^{8}$ which was heated in $\mathrm{P}(\mathrm{OEt})_{3}\left(10^{\circ} \mathrm{C}, 24 \mathrm{~h}, \mathrm{Ar}\right)$ to afford a new HWE reagent 4, diethyl [3-cyano-2-oxo-3-(triphenylphosphoranylidene)-propyl]phosphonate, in excellent overall yield. ${ }^{9}$ A variety of carbonyl compounds were condensed with 4 , and the resulting β, γ-unsaturated α-keto cyanophosphoranes 5 were hydrogenated over $\mathrm{Pd}-\mathrm{C} / \mathrm{H}_{2}(\mathrm{I}$

Scheme 1. Wasserman's approach to α-keto amide/ester units.
atm) to α-keto cyanophosphoranes 2 (Table 1). ${ }^{10}$
Condensation of simple aryl/aliphatic aldehydes with 4 gave exclusively (E)-olefins in excellent yields (run 1, 2, 4, 5). 2,6-Dimethylbenzaldehyde, however, required longer reaction time obviously owing to the steric hindrance (run 3). The reaction of N-BOC-2-aminoacetaldehyde with 4 is of special interest since it ultimately could afford γ-aminobutyric acid (GABA)-derived α-keto amide/ester units, which have been incorporated into bioactive compounds. ${ }^{11}$ Under the standard conditions, N-BOC-2-aminoacetaldehyde furmished 5 F in 89% yield (run 6). The condensation of ketones with 4 , however, has been found very sluggish and incomplete. In the case of acephenone, 5 g was obtained in 69% yield with a ratio $(E / Z, 4 / 6)$ (run 7).

The hydrogenation went straightforward simply by stirring the slurry of 5 and $\mathrm{Pd}-\mathrm{C}(10 \%, 10-30 \mathrm{wt} \%)$ in solvent (THF/MeOH, I/I) under H_{2} (1 atm). Simple aryl/aliphatic/ α-aminoacetaldehyde-derived phosphoranes 5 were hydrogenated perfectly in 3 h with $\mathrm{Pd}-\mathrm{C}\left(10 \mathrm{wt} \%\right.$) (run $\left.\mathrm{P}^{\prime}, 2^{\prime}, 4^{\prime}-6^{\prime}\right)$) However, sterically hindered aryl aldehyde/ketone-derived phosphoranes 5 required higher loading of $\mathrm{Pd}-\mathrm{C}(30 \mathrm{wt} \%)$ and longer reaction time (run $3^{\prime}, 7^{\prime}, 8^{\prime}$). No detectable byproducts were fommed during this step (confirmed by TLC and 'H NMR), signifying the stability of cyanophosphorane subunit under hydrogenation conditions. Thus, usual workup without chromatography afforded pure phosphoranes 2 in quasi-quantitative yields.

In conclusion, we have developed a new synthetic route for β, γ-unsaturated α-keto cyanophosphoranes $/ \alpha$-keto cyanophosphoranes from carbonyl compounds utilizing a new HWE reagent 4 . We are currently applying this new synthetic route for heterocyclic/heteroaromatic/chiral α amino aldehydes, and extending the same approach to the synthesis of α-keto alkoxycarbonylphosphoranes ${ }^{12}$ from carbonyl compounds utilizing a new HWE reagent having alkoxycarbonylphosphorane subunit.

4
(i) base
(ii)

5

2

Scheme 2 . A new synthetic approach to a-keto cyanophosphorancs 2 from carbonyl compounds utilizing a new HWE reagent 4.

Table 1. Condensation of 4 with carbonyl compounds and subsequent hydrogenation of 5 to 2 over $\mathrm{Pd}-\mathrm{C}(10 \%) / \mathrm{H}_{2}(1 \mathrm{~atm})$

		(i) $\mathrm{NaH}(1.3 \mathrm{eq})$, rt, THF, 20 min then $0^{\circ} \mathrm{C}, 20 \mathrm{~min}, \mathrm{Ar}$ (ii) (iii) $0{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}$ then $\mathrm{rt}, \mathbf{X} \mathrm{h}, \mathrm{Ar}$				Pd/C (10\%, $\mathbf{Y} w t \%)$ H_{2} (1 atm), Z h (THF/MeOH, 1/1) 2		
Run	R,	R_{2}	X (h)	5 (Yield, \%)	Run	\mathbf{Y} (wt\%)	Z (h)	2 (Yield, \%)
1	Ph-	H	1	$5 \mathrm{a}(93){ }^{\text {b }}$	1^{\dagger}	10	3	2a (98)
2	2-MePh-	H	3	5b (91)	2^{\dagger}	10	10	2b (97)
3	2,6-(Me)2 Ph -	H	22	5c (87)	3^{+}	30	24	2c (95)
4	$\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{2}-$	H	1	5 d (89) ${ }^{\text {c }}$	4^{1}	10	3	2d (98)
5	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6}-$	H	1	5 e (88) ${ }^{\text {c }}$	51	10	3	2e (97)
6	$\mathrm{BOCNHCH} 2-$	H	1	Sf(89)	6^{+}	10	3	2 f (91)
7	Ph-	$\mathrm{CH}_{3}-$	24	Sg (69) ${ }^{\text {de }}$	7	30	10	$\mathbf{2 g}$ (99)
8	Ph-	Ph-	22	5h (58)	8^{+}	30	6	2h (99)

${ }^{a}$ Isolated yield after flash colunn chromatography on SiO_{2}. ${ }^{5}(E)$-Stereochemistry is unanbiguously confirmed by comparing $\mathrm{mp}, \mathrm{TR},{ }^{1} \mathrm{II}$, ${ }^{13} \mathrm{C}$ NMR of $5 a$ with those of product prepared from trans-cinnamic acid according to the known procedure. ${ }^{\text {I }}$ " (E)-Stereochemistry is confirmed by coupling constant ($c a 15 \mathrm{~Hz}$) between (wo viny/ic protons. The slereochemistry is confimed by noe experiment, and the ratio of ($(E)-(Z)$-olefin) is delermined to be ca $4 / 6$ by 'II NMR. "Starting acetophenone and benzophenone are recovered in 26% \& 37% yield, respectively. Tsolated yield after filtering, washing the filtered-cake (TIIT \& MeOII), concentration in vacuo.

Acknowledgements. The author thank Prof. Yong Hae Kim at KAIST for valuable discussions and encouragement for this project

References and Notes

1. (a) Otto, H. H.; Schirmeister, T. Chem. Rev: 1997, 97, 133. (b) Babine, R. E.; Bender, S. L. Chem. Rev. 1997, 97, 1359.
2. (a) Tanaka, H.; Kuroda, A.; Marusawa, H.; Hatanaka, H.; Kino, T.; Koto, T.; Hashimoto, M.; Taga, T. J. Am. Chem. Soc. 1987, 109, 5031 . (b) Schmodl, H.; Weinbrenner, S. J. Chem. Soc., Chem, Commin. 1994, 1003. (c) Han. W.; Hu. Z.; Jiang, X.; Wasserman, Z. R.; Decicco, C. R. Bioorg. Med. Chem. Lett. 2003, 13, 1111. (d) Tavares, F. X.; Deaton, D. A.; Miller, A. B.; Miller, L. R.; Wright, L. L.; Zhou, H.-Q. J. Med, Chem. 2004, 47, 5049.
3. (a) Angelastro, M. R.; Peet, N. P.; Bey, P. J. Org. Chem. 1989, 54, 3913. (b) Ocain, T. D.; Rich, D. H. J. Med. Chem. 1992, 35, 451. (c) Wasserman, H. H.; Ho, W.-B. J. Org. Chem. 1994, 59, 4364. (d) Kim, S.K.; Nuss, J. M. Tetrahedron Lett. 1999, 40, 1827. (e) Yang, Z.; Zhang. Z.; Meanwell, N. A.; Kadow, J. F.; Wang, T. Org. Lett. 2002, 7, 10245. (f) Chen, J. J.; Deshpande, S. V. Tetrahedron Lett. 2003, 44, 8873. (g) Ma, M.; Li, C.; Peng, L.; Xie, F.; Zhang, X.; Wang, J. Tetrohedron Lett. 2005, 46, 3927.
4. Wong, M. K.; Yu, C.-W.; Yue, W.-H. Yang, D. J. Org. Chem. 2001, $66,3606$.
5. (a) Wasserman, H. H.; Chen, J.-H.; Xia, M. J. Am. Chem. Soc. 1999, 121, 1401. (b) Wasserman, H. H.; Zhang, R. Tetrahedron 2002, 58, 6277. (c) Haberhauer, G. Symett 2004, 1003. (d) Price, W. S.; Fletcher, S., Jorgensen, M. R.; Miller, A. D. Synlett 1(1)6, 1933.
6. (a) Wassemnan, H. H.; Lee, K.; Xia, M. Tetrahedron Lett. 2000, 41, 2511. (b) Lee, K. Butl. Korean Chem. Soc. 2002, 23, 351. (b) Lee, K.; Kim, D.-K. J. Kor. Chem. Soc. 2004, 48, 161.
7. Boulagy, J.; Thomas, R. Chem. Rev. 1974, 74, 87.
8. Listvan, V. N.; Dombrovskii, A. V. Z. Obs, Khim. 1968, 38, 610.
9. Analytical data for 4 : a white solid; $\mathrm{mp} 180.0-182.0^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr})$ $2173,1586,1249 \mathrm{~cm}^{-1}$; 'H NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$) ह $\mathrm{I} .31(\mathrm{t}$, $6 \mathrm{H}, J=7.1 \mathrm{~Hz}), 3.37\left(\mathrm{~d}, 2 \mathrm{H}, J_{\mathrm{H}-\mathrm{p}}=22.0 \mathrm{~Hz}\right), 4.16(\mathrm{~m}, 4 \mathrm{H}), 7.49-$ $7.71(\mathrm{~m}, \mathrm{I} 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 16.3\left(\mathrm{~d}, J_{\mathrm{C} \cdot \mathrm{P}}=5.8\right.$ $\mathrm{Hz}), 38.4$ (ddd, $\left.J_{\mathrm{LC} \cdot \mathrm{P}}=129.9 \mathrm{~Hz}, J_{2 . C \cdot \mathrm{P}}=7.4 \mathrm{~Hz}\right), 51.0\left(\mathrm{dd}, J_{\mathrm{LC} \cdot \mathrm{P}}=\right.$ $\left.126.7 \mathrm{~Hz}, J_{2 \mathrm{C} \cdot \mathrm{P}}=5.0 \mathrm{~Hz}\right), 62.2\left(\mathrm{~d}, J_{\mathrm{C} \cdot \mathrm{P}}=5.8 \mathrm{~Hz}\right), 121.9\left(\mathrm{~d}, J_{\mathrm{C} \cdot \mathrm{P}}=\right.$
$15.7 \mathrm{~Hz}), 122.8\left(\mathrm{~d}, J_{\mathrm{C} \cdot \mathrm{P}}=93.5 \mathrm{~Hz}\right), 129.1\left(\mathrm{~d}, J_{\mathrm{C} \cdot \mathrm{P}}=13.2 \mathrm{~Hz}\right), 133.1$ $\left(\mathrm{d}, J_{C-\mathrm{P}}=3.3 \mathrm{~Hz}\right), 133.6\left(\mathrm{~d}, J_{C \cdot \mathrm{P}}=10.8 \mathrm{~Hz}\right), 186.9\left(\mathrm{dd}, J_{L_{C-C P}}=6.6\right.$ $\mathrm{Hz}, J_{2 \mathrm{C} \cdot \mathrm{P}}=5.0 \mathrm{~Hz}$); HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{P}_{2} 479.1415$, found 479.1412; Anal. calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{P}_{2}: \mathrm{C}, 65.13 ; \mathrm{H}, 5.68$; $\mathrm{N}, 2.92$. found: $\mathrm{C}, 65.36 ; \mathrm{H}, 5.67, \mathrm{~N}, 2.96$.
10. General procedure for 5: To a solution of $4(0.50 \mathrm{mmol}, 240.0$ mg) in THF (15 mL) was added NaH (1.3 eq .26 .1 mg . $60 \% \mathrm{in}$ oil), and the resulting slurry was stirred for 20 min at rt , then for 20 min at $0^{\circ} \mathrm{C}$ under Ar. To this was added benzaldehyde (1.0 eq , 50.8 mL) by syringe, and the mixture was stirred for 30 min at 0 ${ }^{\circ} \mathrm{C}$, then for 1 h at t . The reaction was quenched by $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$, and extracted with $\mathrm{Et}, \mathrm{O}(20 \mathrm{~mL} \times 3)$. The organic layer was dried over MgSO_{4}, filtered, and concentrated. The residue was purified by flash chromatography $\left(\mathrm{SiO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Hexane}, 15 / \mathrm{I}\right)$ to afford $5 \mathrm{a}\left(201.0 \mathrm{mg}, 93 \%\right.$) as a pale-yellow solid; $\mathrm{mp} 232.0-234.0^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}) 2172,1636 \mathrm{~cm}^{-1} ; \mathrm{H}^{\mathrm{H}} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.30-7.70$ $(\mathrm{m}, 22 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 50.9\left(\mathrm{~d}, J_{\mathrm{c}-\mathrm{P}}=128.3\right.$ Hz), $122.1\left(\mathrm{~d}, J_{\mathrm{c} \cdot \mathrm{p}}=15.7 \mathrm{~Hz}\right), 123.2\left(\mathrm{~d}, J_{\mathrm{C} \cdot \mathrm{P}}=93.5 \mathrm{~Hz}\right), 123.7(\mathrm{~d}$, $\left.J_{C \cdot-}=9.1 \mathrm{~Hz}\right), 128.1,128.6,129.2\left(\mathrm{~d}, J_{(\cdot \mathrm{P}}=12.4 \mathrm{~Hz}\right), 129.3,133.1$ $\left(\mathrm{d}, J_{\mathrm{C} \cdot \mathrm{P}}=3.3 \mathrm{~Hz}\right), 133.6\left(\mathrm{~d}, J_{\mathrm{C} \cdot \mathrm{P}}=9.9 \mathrm{~Hz}\right), 135.4,138.9\left(\mathrm{~d}, J_{\mathrm{C} \cdot \mathrm{P}}=\right.$ $1.7 \mathrm{~Hz}), 185.8\left(\mathrm{~d}, J_{C \cdot \mathrm{P}}=3.3 \mathrm{~Hz}\right)$; HRMS calcd for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{NOP}$ 431.1439, found 431.1430 .

General procedtre for 2: A slurry of 5 a ($216.0 \mathrm{mg}, 0.50 \mathrm{mmol}$) and $\mathrm{Pd}-\mathrm{C}(10 \%, 21.6 \mathrm{mg})$ in solvent $(5 \mathrm{~mL}$, THF/MeOH, $1 / 1$) was stirred for 3 h under H_{2} (I atm) using balloon. The mixture was filtered, and the filtered-cake was washed with THF (15 mL) and $\mathrm{MeOH}(15 \mathrm{~mL})$. Concentration in vacuo and drying under high vacuum provided 2 a ($212.6 \mathrm{mg}, 98 \%$) as a white solid; $\mathrm{mp} 172.0-$ $174.0^{\circ} \mathrm{C} ; \mathrm{IR}(\mathrm{KBr}) 2172,1584 \mathrm{~cm}^{-1} ;{ }^{\prime} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ $\delta 7.45-7.70(\mathrm{~m}, 15 \mathrm{H}), 7.18-7.32(\mathrm{~m}, 5 \mathrm{H}), 3.16(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz})$, $3.06(\mathrm{t}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 31.2,40.4$ $\left(\mathrm{d}, J_{\mathrm{C} \cdot \mathrm{P}}=7.4 \mathrm{~Hz}\right), 48.7\left(\mathrm{~d}, J_{\mathrm{C} \cdot \mathrm{P}}=126.6 \mathrm{~Hz}\right), 122.6\left(\mathrm{~d}, J_{\mathrm{C} \cdot \mathrm{P}}=16.6\right.$ $\mathrm{Hz}), 123.2\left(\mathrm{~d}, J_{\mathrm{C} \cdot \mathrm{P}}=93.5 \mathrm{~Hz}\right), 125.8,128.2,128.7,129.1\left(\mathrm{~d}, J_{\mathrm{C} \cdot \mathrm{P}}=\right.$ $13.2 \mathrm{~Hz}), 133.0\left(\mathrm{~d}, J_{\mathrm{C} \cdot \mathrm{P}}=3.3 \mathrm{~Hz}\right), 133.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=9.9 \mathrm{~Hz}\right), 141.5$, 195.9 (d, $J_{\mathrm{C} . \mathrm{p}}=3.3 \mathrm{~Hz}$); HRMS calcd for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{NOP} 433.1596$, found 433.1596 .
I1. (a) Liu, K.-G; Yan, S.; Wu, Y.-L.; Yao, Z.-J. J. Org. Chem. 2002, 67, 6758. (b) Liu, K.-G.; Yan, S.; Wu, Y.-L.; Yao, Z.-J. Org. Lett. 2004, 6, 2269.
12. Lee, K.; Im, J.-M. Tetrahedron Lett. 2001, 42, 1539.

