DOI QR코드

DOI QR Code

Electrical Properties of the Amorphous BaTi4O9 Thin Films for Metal-Insulator-Metal Capacitors

Metal-Insulator-Metal 캐패시터의 응용을 위한 비정질 BaTi4O9 박막의 전기적 특성

  • Hong, Kyoung-Pyo (Department of Materials Science and Engineering, Korea University) ;
  • Jeong, Young-Hun (Department of Materials Science and Engineering, Korea University) ;
  • Nahm, Sahn (Department of Materials Science and Engineering, Korea University) ;
  • Lee, Hwack-Joo (Division of Advanced Technology, Korea Research Institute of Standard and Science)
  • 홍경표 (고려대학교 신소재공학과) ;
  • 정영훈 (고려대학교 신소재공학과) ;
  • 남산 (고려대학교 신소재공학과) ;
  • 이확주 (한국표준과학연구원 전략기술연구부)
  • Published : 2007.11.27

Abstract

Amorphous $BaTi_4O_9$ ($BT_4$) film was deposited on Pt/Si substrate by RF magnetron sputter and their dielectric properties and electrical properties are investigated. A cross sectional SEM image and AFM image of the surface of the amorphous $BT_4$ film deposited at room temperature showed the film was grown well on the substrate. The amorphous $BT_4$ film had a large dielectric constant of 32, which is similar to that of the crystalline $BT_4$ film. The leakage current density of the $BT_4$ film was low and a Poole-Frenkel emission was suggested as the leakage current mechanism. A positive quadratic voltage coefficient of capacitance (VCC) was obtained for the $BT_4$ film with a thickness of <70 nm and it could be due to the free carrier relaxation. However, a negative quadratic VCC was obtained for the films with a thickness ${\geq}96nm$, possibly due to the dipolar relaxation. The 55 nm-thick $BT_4$ film had a high capacitance density of $5.1fF/{\mu}m^2$ with a low leakage current density of $11.6nA/cm^2$ at 2 V. Its quadratic and linear VCCs were $244ppm/V^2$ and -52 ppm/V, respectively, with a low temperature coefficient of capacitance of $961ppm/^{\circ}C$ at 100 kHz. These results confirmed the potential suitability of the amorphous $BT_4$ film for use as a high performance metal-insulator-metal (MIM) capacitor.

Keywords

References

  1. S. B. Chen, C. H. Lai, A. Chin, J. C. Hsieh, and J. Liu, IEEE Electron Device Lett., 23, 185 (2002) https://doi.org/10.1109/55.992833
  2. H. Hu, C. Zhu, Y. F. Lu, M. F. Li, B. J. Cho, and W. K. Choi, IEEE Electron Device Lett., 23, 514 (2002) https://doi.org/10.1109/LED.2002.1004230
  3. S. J. Kim, B. J. Cho, M. F. Li, X. Yu, C. Zhu, A. Chin, and D. L. Kwong, IEEE Electron Device Lett., 24, 387 (2003) https://doi.org/10.1109/LED.2003.813381
  4. S. J. Ding, H. Hu, C. Zhu, M. F. Li, S. J. Kim, B. J. Cho, D. S. H. Chan, M. B. Yu, A. Y. Du, A. Chin, and D. L. Kwong, IEEE Electron Device Lett., 25, 681 (2004) https://doi.org/10.1109/LED.2004.835791
  5. S. Y. Lee, H. S. Kim, P. C. Mclntyre, K. C. Saraswat, and J. S. Byun, Appl. Phys. Lett., 82, 2874 (2003) https://doi.org/10.1063/1.1569985
  6. C. Wenger, J. Dabrowski, P. Zaumseil, R. Sorge, P. Formanek, G. Lippert, and H. J. Mussig, 7, 227 (2004) https://doi.org/10.1016/j.mssp.2004.09.018
  7. S. J. Kim, B. J. Cho, M. B. Yu, M. F. Li, Y. Z. Xiong, C, Zhu, A. Chin, and D. L. Kwong, IEEE Electron Devices Lett., 26, 625 (2005) https://doi.org/10.1109/LED.2004.840395
  8. K. C. Chiang, C. C. Huang, A. Chin, W. J. Chen, S. P. McAlister, H. F. Chiu, J. R. Chen and C. C. Chi, IEEE Electron Device Lett., 26, 504 (2005) https://doi.org/10.1109/LED.2005.851241
  9. S. J. Kim, B. J. Cho, M. F. Li, S. J. Ding, C. Zhu, M. B. Yu, B. Narayanan, A. Chin, and D. L. Kwong, IEEE Electron Device Lett., 25, 538 (2004) https://doi.org/10.1109/LED.2004.832785
  10. S. J. Kim, B. J. Cho, M. B. Yu, M.-F. Li, Y. Z. Xiong, C. Zhu, A. Chin, and D. L. Kwong, IEEE Electron Device Lett., 26, 625 (2005) https://doi.org/10.1109/LED.2005.854378
  11. K. C. Chiang, C. C. Huang, G. L. Chen, W. J. Chen, H. L. Kao, Y. H. Wu, A. Chin, and S. P. McAlister. IEEE Trans. Electron Devices, 53, 2312 (2006) https://doi.org/10.1109/TED.2006.881013
  12. K. Wakino, K. Minai, and H. Tamura, J. Am. Ceram. Soc., 67, 278 (1984)
  13. T. Ncgas, G. Yeager, S. Bell, N. Coats, and I. Minis, Am. Ceram. Soc. Bull., 72, 80 (1993)
  14. J. H. Choy, Y. S. Han, J. H. Sohn, and M. Itoh, J. Am. Ceram. Soc., 78, 1169 (1995) https://doi.org/10.1111/j.1151-2916.1995.tb08464.x
  15. M. Cernea, E. Chirtop, D. Neacsu, I. Pasuk, and S. Iordanescu, J. Am. Ceram. Soc., 85, 499 (2002)
  16. B. Y. Jang, Y. H. Jeong, S. J. Lee, K. J. Lee, S. Nahm, H. J. Sun, and H. J. Lee, J. Amer. Cer. Soc., 88, 1209 (2005) https://doi.org/10.1111/j.1551-2916.2005.00311.x
  17. B. Y. Jang, Y. H. Jeong, S. J. Lee, K. J. Lee, S. Nahm, H. J. Sun, and H. J. Lee, J. Euro. Cer. Soc., 26, 1913 (2006) https://doi.org/10.1016/j.jeurceramsoc.2005.09.020
  18. B. Y. Jang, B. J. Kim, S. J. Lee, K. J. Lee, S. Nahm, H. J. Sun, and H. J. Lee, Appl. Phy. Lett., 87, 112902-3 (2005) https://doi.org/10.1063/1.2048827
  19. International Technology Roadmap for Semiconductors, (2005)
  20. L. I. Maissel, R. Glang, Handbook of Thin Film 'Technology., p.14-13-14-25, McGraw-Hill, New York, (1970)
  21. S. M. Sze, Physics of Semiconductor., p. 403, John Wiley & Sons, New York, (1981)
  22. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics., p. 662, John Wiley & Sons, New York, (1976)
  23. C. Zhu, H. Hu, X. Yu, S. J. Kim, A. Chin, M. F. Li, B. J. Cho and D.-L. Kwong, in Proc. of IDEM, 879 (2003)
  24. S. Blonkowski, M. Regache, and A. Halimaoui, J. Appl. Phys., 90, 1501 (2001) https://doi.org/10.1063/1.1381043
  25. F. M. Pontes, E. R. Leite, E. Longo, J. A. Varela, E. B. Araujo and J. A. Eiras, Appl. Phys. Lett. 76, 2433 (2000) https://doi.org/10.1063/1.126367