Microwave dielectric properties of $(1-x)CaWO_4-xYNbO_4$ ceramics

$(1-x)CaWO_4-xYNbO_4$계 세라믹스의 마이크로파 유전특성

  • Kim, Su-Jung (Department of Materials Engineering, Kyonggi University) ;
  • Kim, Eung-Soo (Department of Materials Engineering, Kyonggi University)
  • Published : 2007.10.31

Abstract

Microwave dielectric properties of $(1-x)CaWO_4-xYNbO_4$ ceramics have been investigated as a function of $YNbO_4$ content($0.05{\leq}x{\leq}0.4$). A single phase with tetragonal scheelite structure was obtained up to x=0.10 and then the secondary phase with fergusonite structure was increased. With the increase of $YNbO_4$ content, apparent densities of the specimens were decreased. This results were due to the lower theoretical density of $YNbO_4(5.581g/cm^3)$ than that of $CaWO_4(6.117g/cm^3)$. Dielectric constant(K) and quality factor(Qf) were decreased with $YNbO_4$ content which could be attribute to the decrease of density and the increase of secondary phase. Temperature coefficient of resonant frequency (TCF) of the specimens with the $YNbO_4$ content was depended on dielectric mixing rule.

[ $(1-x)CaWO_4-xYNbO_4$ ]계에 대하여 $YNbO_4(0.05{\leq}x{\leq}0.4)$의 치환량 변화에 따른 마이크로파 유전특성을 고찰하였다. x=0.10 조성까지 정방정(tetragonal) scheelite 구조의 $CaWO_4$ 단일상이 확인되었고, 그 이상 첨가 시 fergusonite 구조의 2차상이 증가하였다. $YNbO_4$ 첨가량이 증가할수록 겉보기 밀도는 감소하였는데, 이는 $CaWO_4(6.117g/cm^3)$보다 $YNbO_4(5.581g/cm^3)$가 더 낮은 이론밀도 값을 갖기 때문이다. $YNbO_4$의 첨가량이 증가함에 따라 유전상수(K)와 품질계수(Qf)는 2차상의 증가와 밀도의 감소로 인해 감소하는 경향을 보였고, $YNbO_4$ 치환량에 따른 소결시편의 공진주파수 온도계수(TCF)의 변화는 존재상의 유전체 혼합 법칙(dielectric mixing rule)에 의존하였다.

Keywords

References

  1. O. Yamaguchi, K. Matsui and T. Kawabe, 'Crystalliza- tion and transformation of distorted tetragonal $YNbO_{4}$', J. Am. Ceram. Soc. 68(10) (1985) C-275
  2. V.S. Stubican, 'High temperature transitions in rare earth niobates and tantalates', J. Am. Ceram. Soc. 47(2) (1964) 55 https://doi.org/10.1111/j.1151-2916.1964.tb15654.x
  3. E.S. Kim and S.H. Kim, 'Influence of bond valence on microwave dielectric properties of $(1-x)CaWO_{4}-xLnNbO_{4}$ (Ln = Nd, Sm) Solid Solution', J. Electroceramics (in press)
  4. R.D. Shannon, 'Dielectric polarizabilities of ions in oxides and fluorides', J. Appl. Phys. 73 (1993) 348 https://doi.org/10.1063/1.353856
  5. M.D. Cohen, 'Percison lattice constants from X-ray powder photograph', Rev. Sci. Instrum. 6 (1935) 68
  6. B.K. Hakki and P.D. Coleman, 'A dielectric resonator method of measuring inductive capacities in the millimeter range', IEEE Trans. Microwave Theory Tech. 8 (1960) 402 https://doi.org/10.1109/TMTT.1960.1124749
  7. T. Nishikawa, K. Wakino, H. Tanaka and Y. Ishikawa, 'Precise measurement method for temperature coefficient of microwave dielectric resonator material', IEEE MTT-S Int. Microwave Symp. Dig. 3 (1987) 277
  8. JCPDS Card no. 41-1431
  9. JCPDS Card no. 23-1486
  10. K. Nishiyama, T. Abe, T. Sakagychi and N. Momozawa, 'Damping properties of $YNbO_{4}-Nb2O_{5}-Y2O_{3}$ ceramics', J. Alloy Compo 355 (2003) 103 https://doi.org/10.1016/S0925-8388(03)00223-8
  11. R.D. Shannon, 'Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides', Acta. Cryst. A 32 (1976) 751 https://doi.org/10.1107/S0567739476001551
  12. C.P. Haberger, C.E. Condon, S.R. Khan and J.H. Adair, 'Evaluation of the calcium oxalate monohydrate hamaker constant based on static dielectric constant determination and electronic polarization', Collods and surfaces B 10 (1997) 13 https://doi.org/10.1016/S0927-7765(97)00044-1
  13. W.S. Kim, E.S. Kim and K.Y. Yoon, 'Effects of $Sm^{3+}$ substitution on dielectric properties of $Ca_{(1-x)}Sm_{(2x/3)}TiO$ ceramics at microwave frequencies', J. Am. Ceram. Soc. 82(8) (1999) 2111
  14. J.M. Wu, M.C. Chang and P.C. Yao, 'Reaction sequence and effects of calcination and sintering on microwave properties of $(Ba,Sr)O-Sm_{2}O_{3}-TiO_{2}$ ceramics', J. Am. Ceram. Soc. 73(6) (1990) 1599
  15. T. Gloriant, M. Gich, S. Surifiach, M. D. Baro and A. L. Greer, 'Evaluation of the volume fraction crystallised during devitrification of aI-based amorphous alloys', J. Metastable & Nanocrystalline Materials 8 (2000) 365