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STABILITY OF TWO-PHASE FLOW MODELS

HYEONSEONG JIN

ABSTRACT. In this paper, we study two-phase flow models. The chunk
mix model of the two-phase flow equations is analyzed by a characteristic
analysis. The model discussed herein has real characteristic values for all
physically acceptable states and except for a set of measure zero has a
complete set of characteristic vectors in state space.

1. Introduction

In this paper, we study two-phase flow models. Multiphase flows display a
wealth of detail which is not reproducible, neither experimentally nor in sim-
ulations. Generally speaking, this detail is not relevant, and fortunately, only
the statistical averages of the detail are of importance. Thus direct numerical
simulation (DNS) of mix, as discussed in [4, 6, 15, 22], gives more information
than is needed, and information which cannot be reproducible in detail. Since
we really want the averages of the DNS, the natural question is to find averaged
equations which will compute the averaged quantities directly, without use of
the difficult intermediate DNS step.

Averaging equations [5, 16] arise in many areas of science. Generally, when
the original equations are nonlinear, or when the coefficients of a linear term are
to be averaged, lengthy discussions of how to formulate the averaged equations
ensue. The issue is that nonlinearities do not commute with averaging, so the
average of a nonlinear function is not equal to the function evaluated at the
average value of its argument. We wish to average over each phase, and end up
with multi-phase flow equations. The nonlinear closure terms will then reflect
the forces, etc. exerted between the two phases.

For mix at a molecular level, all the nonlinear closure issues occur in the
equation of state, which must describe the pressure and other thermodynamic
functions of an atomic mixture of multiple species. In this case all species
have common velocities and temperatures. If the mixing is less fine grained,
we call the problem chunk mix. The complete first order multiphase averaging
of the microphysical equations leads to such a model, in which each species
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has separate velocities and thermodynamics (pressure and temperature). We
have recently found a closure of this type which preserves all requirements of
an obvious physical nature: required boundary conditions at the edges of the
mixing zone, conservation of species mass, total momentum, total energy and
for smooth flows, phase entropy [13, 14]; see also earlier work [8, 9, 10, 11]. The
only parameters to be fixed in this closure are determined by the growth rates
for the edges of the mixing zone. Also we have compared the various models,
which are distinguished by their choice of closures, and we have studied their
compatibility for two-phase flow models of mixing layers [12].

The purpose of this paper is to analyze the chunk mix model of the two-
phase flow equations by a characteristic analysis. The model we consider has
distinct phase pressures and leads to hyperbolic models, eliminating mathemat-
ical difficulties of complex characteristics associated with single pressure flow
models. For systems of partial differential equations of first order, stability in
the sense of von Neumann is essentially equivalent to the condition that the
model be hyperbolic. Here we show that the models have real characteristic
values for all physically acceptable states and except for a set of measure zero
have a complete set of characteristic vectors in state space. Therefore, these
models are hyperbolic a.e. (almost everywhere) in state space. Also, they are
stable in the sense of von Neumann a.e. in state space even without inclusion
of viscosity terms.

Compared to the single-pressure model, the two-pressure model approximate
additional physical features and is shown to be a viable approach for the case of
separated flow. The single-pressure models have complex characteristic values
within the range of interest of the dependent variables. Thus the models are
physically unacceptable and lead to ill-posed initial value problems. The com-
plex characteristic values of the single pressure models appear to result from the
unrealistic assumption called the hydrostatic assumption that the pressures are
in equilibrium. Whereas, the two-pressure models allow for the possibility that
the flow is not hydrostatic and thus do not include the unrealistic assumption
which apparently leads to the complex characteristic values. A careful inspec-
tion of all of the approximations and assumptions in the development of the
single-pressure model led to the conclusion that the only reasonable change
leading to a hyperbolic model is the change in the hydrostatic assumption to
allow the model to become a truly two-pressure model. Development of the
two-pressure models has been discussed in (18, 21].

1.1. A two-phase flow model for a fluid mixing layer

Jin et al. [13, 14] recently proposed a two-phage flow mode! for fluid mixing
using a formalism that is described by Drew [5]. In this section, we present this
model and specify improved constitutive laws for the material coupling terms.

Effective equations of motion are derived by performing single-phase aver-
ages of the microphysical model over an infinite ensemble of microscopic flow
realizations. We assume a mixing zone homogeneity in a specified flow regime
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characterized by large scale coherent mixing structures (bubbles of light fluid,
etc.), on the order of the thickness of the mixing zone, and by short time scales,
so that relaxation terms are omitted.

The two-phase flow model obtained by ensemble averaging within each fluid
is then
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for the advection of the volume fraction and for conservation of mass and
momentum. We also have one and only one of the energy equations
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for the volume fraction Bk, velocity v, density pg, pressure py, entropy Sk,
internal energy e, and total energy Ej of phase k. Here g = g(t) > 0 is
the gravity and we assume ps > p;. The quantities v*,p* and (pv)” are the
averaged quantities at the interface,
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where ng is the unit normal vector in the preferred direction and () is an
average over the z, y symmetry plane and in principle an ensemble average.

The definitions (5) are fundamental to all that follows. They are mathe-
matically exact consequences of the averages of the microphysical equations
and specify the quantities (the RHS of (5)) that are to be approximated in
a definition of closure to complete the averaged equations (1)-(4c). In §2, we
reexamine the mathematically exact expression for each ¢*, ¢ = v, p, pv, in-
dependently of any closure assumptions. The derivation leads to a natural
formulation closures for the constitutive laws. See [13, 14] for more details.

There is a choice of averaging the total energy [19], internal energy [3, 9]
or entropy [17, 20] equations (4); and only one is to be used. These averages
give distinct equations, which differ by triple correlations only, and so they
should have similar solutions. The triple correlations which mark the difference
between the three sets of equations occur in the energy equation. Obviously,
the total energy closure (4a) and entropy closure (4c) show total energy and
phase entropy conservation, respectively. But the entropy in the total energy
closure (4a), the total energy and entropy in the internal energy closure (4b)
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and the total energy in the entropy closure (4c) are not obviously conserved.
We have discussed conservation of the energy or entropy for the three cases
and derived conservation constraints in [12].

2. Spatial homogeneity closure and stability

In [2, 13, 14] an exact expression for the interface quantities ¢*, ¢ = v, p, pv,
has been derived by manipulation of the governing equations (1)-(4a) in the
absence of any closure assumption. Based on this expression, closures have
been proposed for the constitutive law dz(t). Here we recover these formulas
as well as the fractional linear form for the convex coeflicients and a natural
assumption on the constitutive law to close the fractional linear form. We
regard the closure equations as a new and independent constraint, which are
restrictions on the physical flow regime described by the model. The detailed
relations of the equations are repeated in §2.1 and §2.2. In §2.3 we discuss
stability of the two-phase flow equations (1)-(4c) by a characteristic analysis.

2.1. The v* and p* closures

In [2, 7, 13, 14] the interfacial terms v* and p* have been derived exactly from
(1)-(3) independently of any closure assumption. The results are summarized
in the following theorem.

Theorem 2.1. The interface quantities v* and p* have the ezact formula

(6) ¢ =ple+pia, g=v, p,

where the mizing coefficients have the fractional linear form
Br
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The constitutive factor d is also expressed in the ezact form
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where Dy /Dt = 8/0t + v,0/08z is the phase k convective derivative.

The factor dj(z,t) in (8) is a ratio of logarithmic rates of volume creation
for the two phases. The coefficient df(z,t) represents a ratio of the forces
accelerating the two fluids. As observed earlier [8, 9], p* contains drag, added
mass and buoyancy effects commonly included in phenomenological closure
models. Thus p* and ultimately the ) and d} determine these effects in the
present model.
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A closure condition of spatial homogeneity assumes an integral formula for
the closure dj (t), ¢ = v, p. Refer to [2, 7, 13]. These closures are logically and
physically independent of and distinct from (8) and (9), respectively. Thus a
zero parameter model for the constitutive law dj (¢) has been proposed, provided
the mixing zone edge positions Z(t) or velocities Vi (t) = Zi. The relation
d?(t)di(t) = 1 is equivalent to uf + ud = 1 from (7). It is proved that pg >0
for 0 < Bk < 1if and only if di (¢) > 0.

In [1, 2, 13] the spatial homogeneity closures are compared in a validation
study to spatial averages of DNS, i.e., simulation solutions of the microphysical
equations. When dj(t) > 0, the closed and the unclosed ¢*, ¢ = v,p show
excellent agreement with data. In case that di(t) < 0, a zero in the denominator
of (7) occurs. This singularity can be removed through selection of a special
choice of di(t) = di(z*,t). In this case, the choice of ¢* is insensitive to the
choice of the positive minimum df, and it is insensitive to dj altogether. For
this reason, we may avoid problems with cancelation of zeros in a definition of
d] and force dj to be positive. For the 3D Rayleigh-Taylor and circular 2D
Richtmyer-Meshkov data, we have seen excellent validation agreement for the
closures proposed. See [2, 13].

2.2. The (pv)* closure

The exact form for (pv)* is derived from the total energy closure (4a). It is
based on the entropy equation derived from (4a). Thus total energy is auto-
matically conserved. A spatial homogeneity assumption gives a closure for the
constitutive law d}’. For details, refer to [2, 12, 14].

Using (4a), we yield the exact expression
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expressed via the equation of state from the macro (averaged) energy is not
the same as the macro entropy, Sy = (XxpS) / (Xip), expressed directly as an
average of the micro entropy [14]. The mixing coefficients in (10) satisfy the
fractional form

Br
12 R T
( ) By Bk + dz Bk’
The exact form (10) for (pv)* have no approximations and they are mathemat-

ically equivalent because they are derived from the equivalent Eq. (4a).
The identity (10) suggests possible distinct closure relation for the constitu-

tive law,
Lyt D ,S ,
/ pk/ka thk dZ
(13) ay (1) = 2
/ : prT DkSkdz
kdk
Zi Dt

The ratio d8°(t) is formed by spatially averaging the numerator and denomi-
nators of the exact form d}’(z,t) based on (10), and it represents the ratio of
the incremental amount of heat added to the system for two fluids. The mixing
coefficients satisfy the relations p}” +ub” = 1 and p}” > 0, which are equivalent
to the relations d5”(¢)d5"(t) = 1 and d;"(¢) > 0. The direct validation of the
closure (pv)*, based on analysis of the simulation data is presented in [2].

2.3. Characteristic analysis

In this section we analyze the chunk mix model of the two-phase flow equa-
tions (1)-(4c) in characteristic analysis and show it to be hyperbolic. We ob-
serve that the hyperbolicity of the model is independent of the choice of the
averaged total energy, internal energy or entropy equations (4a)-(4c). We here
present specific results for each of the three 7 x 7 systems (1)-(4c).

Theorem 2.2. Each of the systems (1)-(4c) has all real characteristic values
(14) v", vk £k, Uk

for k = 1,2, where ¢, is the sound speed of phase k. It is hyperbolic a.e. in
state space and stable in the sense of von Neumann a.e. in state space.

The hyperbolicity of the two-pressure model (1)-(4c) is lost at a subset of
the points where

(15) m=vg—v"=0 or A =ck—(vp—v*)?>=0.

This set has measure zero (because it has lower dimension). This result follows
from an observation regarding characteristic vectors.
Let

(16) Ut = (Bapz, Bapava, Brp1, Brprv1, B1, Sa, S1)
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and let
(17)
0
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where U? denotes the transpose of the vector U,

(18)

P =p—p" = o}
(19)
U™ — proy 4 prug — (pu)*  if the total energy averaged (4a)
P =2 pot — (po)* if the internal energy averaged (4b)
0 if the entropy averaged (4c).

Here we denote S, the directly averaged entropy for the entropy closure (4c)
and the macro entropy expressed from the fluid & EOS of directly averaged
quantities for the total energy closure (4a) and internal energy closure (4b).
Then the two phase flow model may be written as the following

Uy
ot

Observe that the characteristic equation has the seven real roots

(20) A(U)%—Z =0.

(21) AzﬂziCZ,UliC‘l,Uz,’Ul,U*

Given either that v* — XA # 0 or that v* — A =0 and
(c% — (v2 = N)?) (& — (v — A% (va = N)(vr = ) #0,

the seven right eigenvectors associated with the characteristic values A are
linearly independent. We now consider conditions to guarantee the existence
of a complete set of linearly independent characteristic vectors when v* —A =0
and (3 — (v2 — X)?) (¢ — (v1 = M)?) (v2 — N)(v1 — A) = 0. For example, if
v = 0 and 72 = 0 are satisfied, we know that n1 # 0 and 7z # 0 because
¢2 # 0. In this case, a necessary and sufficient condition for existence of a
pm

complete set of characteristic vectors is that P,SV) - mg%; = 0 for both

phases. We summarize this result as follows
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Proposition 2.3. For all physically acceptable states the chunk miz model
(1)-(4c) is hyperbolic if and only if one of the following cases is obtained:

P(TI) 31)1
=0 = 0 P(FY) - ——7e =0
(a') s Y2 =0,m # 0,12 #0 and 1 7)1/)(1?1 851 ’
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Here P,SV) and P are given in (18) and (19).

In the compressible case, the system (1)-(4) is missing one condition at each
edge z = Zi(t) of the mixing zone. Each missing condition is associated with
a missing characteristic at the Z; boundary. For the fluid with vanishing 8,
the sonic characteristic entering from the 8; = 0 side is missing. This missing
information is supplied by the edge acceleration Zk(t). Thus we regard the
edge positions Z(t) as input, or data, which complete the specification of the
model or close it. We appeal to the buoyancy drag model to provide the Zy(t).
See [10] and references therein. In this sense we separate and almost totally
decouple the complete two-phase model into distinct edge and interior models,
with the edge model completing the closure of the entire model. The closures
(6) and (10) are independent of the unclosed model equations and provide new
constraints for d}, ¢ = v, p, pv. With the mixing zone edge velocities Vi (t) and
constitutive laws (8), (9) and (13), the compressible model has no adjustable
parameters. Therefore, we have ten independent equations, (1)-(3), (4a), (6)
and (10) for the ten variables, 81, p1, p2, v1, v2, E1, Ep, v*, p* and (pv)*.
This full system of the compressible equations closes by a count of primitive
variables. It is not hyperbolic because the constitutive laws for dj, ¢ = v, p, pv,
include integral-differential terms. However, its 7 x 7 subsystems, (1)-(3), (4a),
is hyperbolic as discussed in Theorem 2.2.
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3. Conclusion

The recently developed two-phase flow model (1)-(3), (4a) with the closures
¢*, ¢ =, p, pv,in [1, 13, 14] and repeated in §2 satisfies hyperbolic stability

conditions.

Acknowledgments. The author thanks Dr. J. Glimm for helpful discussions.

References

[1] W. Bo, B. Cheng, J. Du, B. Fix, E. George, J. Glimm, J. Grove, X. Jia, H. Jin, H. Lee,

Y. Li, X. Li, X. Liu, D. H. Sharp, L. Wu, and Yan Yu, Recent progress in the stochastic
analysis of turbulent mizing, Contemporary Mathematics 429 (2007), 33-44.

[2] W. Bo, H. Jin, D. Kim, X. Liu, H. Lee, N. Pestieau, Y. Yan, J. Glimm, and J. Grove,

Multi phase flow models, Phys. Rev. E, Submitted, Stony Brook University Preprint
Number SUNYSB-AMS-07-02, 2007.

Y. Chen, J. Glimm, D. H. Sharp, and Q. Zhang, A two-phase flow model of the Rayleigh-
Taylor mizing zone, Phys. Fluids 8 (1996), no. 3, 816-825.

[4] B. Cheng, J. Glimm, X. L. Li, and D. H. Sharp, Subgrid models and DNS studies of

fluid mizing, In E. Meshkov, Y. Yanilkin, and V. Zhmailo, editors, Proceedings of the
7th International Conference on the Physics of Compressible Turbulent Mixing, (1999),
pages 385-390, Sarov, Nizhny Novgorod region, Russia, 2001.

D. A. Drew, Mathematical modeling of two-phase flow, Ann. Rev. Fluid Mech. 15 (1983),
261-291.

[6] E. George, J. Glimm, X. L. Li, A. Marchese, and Z. L. Xu, A comparison of experimen-

tal, theoretical, and numerical simulation Rayleigh- Taylor mizing rates, Proc. National
Academy of Sci. 99 (2002), 2587-2592.

J. Glimm and H. Jin, An asymptotic analysis of two-phase fluid mizing, Bol. Soc. Bras.
Mat. 32 (2001), 213-236.

J. Glimm, H. Jin, M. Laforest, F. Tangerman, and Y. Zhang, A two pressure numerical
model of two fluid mizing, Multiscale Model. Simul. 1 (2003), 458-484.

J. Glimm, D. Saltz, and D. H. Sharp, Two-pressure two-phase flow, In G.-Q. Chen,
Y. Li, and X. Zhu, editors, Nonlinear Partial Differential Equations, pages 124-148,
‘World Scientific, Singapore, 1998.

J. Glimm, D. Saltz, and D. H. Sharp, Two-phase modeling of a fluid mizing layer, J.
Fluid Mech. 378 (1999), 119-143.

[11] H. Jin, The incompressible limit of compressible multiphase flow equations, Ph. D. thesis,

SUNY at Stony Brook, 2001.
, A study of multi-phase flow models, Submitted.

(13] H. Jin, J. Glimm, and D. H. Sharp, Compressible two-pressure two-phase flow models,

Phys. Lett. A 353 (2006), 469-474.

, Entropy of averaging for compressible two-pressure two-phase models, Phys.
Lett. A 360 (2006), 114-121.

[15] H. Jin, X. F. Liu, T. Lu, B. Cheng, J. Glimm, and D. H. Sharp, Rayleigh- Taylor mizing

rates for compressible flow, Phys. Fluids 17 (2005).

W. D. McComb, The Physics of Fluid Turbulence, Oxford University Press, Oxford,
1990.

[17] V. H. Ransom and D. L. Hicks, Hyperbolic two-pressure models for two-phase flow, J.

Comp. Phys. 53 (1984), 124-151.

118] V. H. Ransom and M. P. Scofield, Two-pressure hydrodynamic model for two-phase

separated flow, Report SRD-50-76, INEL, 1967.
D. Saltz, W. Lee, and T.-R. Hsiang, Two-phase flow analysis of unstable fluid mizing
in one-dimensional geometry, Phy. Fluids 12 (2000}, no. 10, 2461-2477.



596 HYEONSEONG JIN

[20] H. B. Stewart and B. Wendroff, Two-phase flow: Models and methods, J. Comp. Phys.
56 (1984), 363-409.

[21] B. Wendroff, Two-fluid models: A critical survey, Los Alamos Scientific Laboratory,
LA-UR-79-291, 1979.

[22] D. L. Youngs, Numerical simulation of turbulent mizing by Rayleigh-Taylor instability,
Physica D 12 (1984), 32-44.

DEPARTMENT OF MATHEMATICS
CHEJU NATIONAL UNIVERSITY
JEJU 690-756, KOREA

E-mail address: hjin@cheju.ac.kr



