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GLOBAL SOLUTIONS OF SEMIRELATIVISTIC HARTREE
TYPE EQUATIONS

YONGGEUN CHO AND ToHRU OzAawa

ABSTRACT. We consider initial value problems for the semirelativistic
Hartree type equations with cubic convolution nonlinearity F(u) = (V *
|u|?)u. Here V is a sum of two Coulomb type potentials. Under a specified
decay condition and a symmetric condition for the potential V' we show
the global existence and scattering of solutions.

1. Introduction

In this paper we consider the following Cauchy problem:

1) { i0u=+vm?2 —Au+ F(u) in R" xR, n > 1,
u(z,0) = p{x) in R™

Here m > 0 denotes the mass of Bosons in units 4 = ¢ = 1 and F(u) is nonlinear

functional of Hartree type such that F(u) = (V * |u|*)u, where V = V; + V;

and * denotes the convolution in R™. We assume that the potentials V; and V5

are real valued functions with the estimate

(2) Vi(z)| < =77,

where 0 < 7v; < n,i = 1,2. The typical examples of V are the Coulomb

potential V/(z) = A|z|~! corresponding to the case v; = 75 = 1 and the Yukawa

potential V(z) = )\e_];r corresponding to the case y; = 1 and any 2 > 0,

where A is a real number and p is a nonnegative real number. For the energy

conservation we assume that

(3) V(z) = V(-z).

The equation (1) is called the semirelativistic Hartree equation, which de-
scribes the Boson stars with Coulomb potential. See [4, 5, 7] and the references
therein.

The main purpose of this paper is to improve the known results in [1, 8] for
the local and global existence theory to the equation (1) with a general class of
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1066 YONGGEUN CHO AND TOHRU OZAWA

potentials as above and the scattering theory of the global solutions. For this
purpose we study the Cauchy problem (1) in the form of the integral equation:

t

@) w(t) = Ut)p — i /0 Ut — ) F(u)(t')dt,
where
(U(t)cp)(x) — (e_it\/m2_Ag0)(x) — (2;.)7; /n ei(z.é—tw/m2+|€|2)s’5(§) de.

Here we denote the Fourier transform of ¢ by @(¢) = [ e %i(z) dz.

A solution of the equation (1) enjoys two conservation laws to be used for
the global existence in the case 0 < 71,72 < 2. If a solution u of (1) has
sufficient decay at infinity and smoothness and V satisfies the condition (3),
then it satisfies

(5) ()2 = lleli L2,

E(u) = Kn(u) +V(u) = E(p),

where Kpn(u) = 1(vVm? — Au,u), V(u) = 1(F(u),u) and (,) is the complex
inner product in L?. For a rigorous proof of (5) see 8] in the case of 0 <
71,¥2 < 1 and [11] in the case of 1 < 71,72 < 2.

We show the global existence case by case. In section 2 we consider the
potential with 0 < 77,92 < 1. This can be done by adopting exactly the same
arguments (conservation laws (5) and contraction mapping theorem) as in [1].
The crucial estimate for local existence is the following Hardy inequality

2 < 2
©) IV o Pl S ol
Throughout this paper, || - || xny means || - ||x + || - ||y for Banach spaces X

and Y. For the global existence we use the time-continuity argument via the
energy conservation. On the other hand, from the energy conservation, we
get an estimate of solution which is uniform in the mass m on any finite time
interval (if m is bounded from above) and then get a strong convergence of
solutions of (1) to a solution of the massless equation (m = 0). If m is large,
then the situation is quite different. The kinetic energy K, (u) is not bounded
globally in time any more. This can be overcome by a phase modulation and a
uniform bound of local solutions in H® with s > %-. The modulated solution is
closely approximated by a solution of a Schrédinger equation of Hartree type
if m is sufficiently large. We interpret this phenomenon as a non-relativistic
limit and eventually as a semi-classical or vanishing dispersion limit. For the
details see Remark 1 below and Propositions 2.4. and 2.5 of [1].

In sections 3, 4 and 5 we consider a case that «; and ~y» are large. The main
tools are the Strichartz estimates and conservations laws (5). If we use the
estimate (6) for this case, then on account of the range of vy and -2 the right
hand side of (6) cannot be bounded by energy (actually the estimate (6) for
the case 71,72 > 1 is an energy supercritical estimate). Hence we exploit the
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well-known Strichartz estimate for the unitary group U(t) which is stated as
follows (see [9, 10]):

WO @l g0 grz0-o0 < lpllar=o,
T Hro

() / t Ut —t)ft')dt

S llesmens
LB HT

where (g;,7:),% = 0, 1, satisfy that for any 6 € [0,1]

2 1 1 1 1
o a0 (3or) mmesia(3-1),
2<gi,ri <00, (i 73) # (2,00).

We call a pair (g, 7, o) satisfying (8) an admissible pair. If 6 = 0, it is called wave
admissible and if @ = 1, then Schrodinger admissible. Here HS = (1—A)~*/2L"
is the usual Sobolev space and H® = HS. Hereafter, we denote the space
L%(0,T; B) by L%.(B) and its norm by || - || ¢ 55 for a Banach space B, and also
L9(B) with norm || - ||«p by L4(0,00; B), 1 < g < oo. For the related weighted
Strichartz estimates, see [2, 3] in which some global existence and scattering of
radial solutions are considered.

On the right hand side of the second inequality of (7), only the space L1 H*!
for f is related because contrary to the case of Klein-Gordon equation, inho-
mogeneous estimate for U(¢t) preserves a regularity. One of course can consider
the general space like L9H? with additional regularity. In section 3, we use
the wave and Schrodinger admissible pairs to prove the global existence. In
[1] the global existence is proved for 0 < 7; = 72 < f—rl,n > 2. When the
potentials are competing each other, the Sobolev embedding argument on the
single potential as in [1] is not enough, especially if the difference of v; and
72 is big and 71,7y, > 5% To overcome this difficulty, we proceed with an
interpolation together with Sobolev embedding for the proof. In case that one
of v1 and 7> is smaller than 1 and the other is larger than nL—}—l’ we use the
Hardy inequality as in section 2 together with an interpolation argument.

In section 4, we use the end point Schrodinger admissible ones for the small
data scattering in the case 2 < 1,2 < n. This case can be treated in a similar
way to the single potential case.

The most difficult case is when 71 < 2 < 73, or 72 < 2 < ;. To control
potentials of these types we can try to use non-endpoint admissible pair and
endpoint one simultaneously, but this does not seem to work. To avoid this
difficulty, in section 5 we assume stronger condition on V3 and V; such that
Vi(2)| < x{zi<rylzl™ and |Va(z)] S X{jz|>ry |27 for 71 < 2 and 72 > 2.
For these potentials V becomes an L* function. Hence this enables us to use a
wider range of 41 and the end point Schrodinger admissible pair to obtain the
global existence. For potentials of these types, the case 71 = 2 can be treated
on account of the endpoint wave admissible pair.
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Unfortunately, we do not have any idea of the global existence for the po-
tentials as stated above in case that 72 < 2 < ;. The decay of V' at space
infinity becomes slower and the singularity at the origin stronger than those of
V satisfying above conditions, which make the competition between the poten-
tials stronger. We believe the global existence at least for the case that one of
~1 and 2 is between 52% and 2. For this we need to establish a new method.
As a future work, this problem seems to be worth being pursued on account of
not only the mathematical concern but applications to the another equations
like Dirac and Klein-Gordon, etc.

If not specified, throughout this paper, the notation A < B and A 2 B
denote A < CB and A > C'B, respectively. Different positive constants
possibly depending on n,m, A and v might be denoted by the same letter C.
A ~ B means that both A < B and A 2 B hold. For v with 0 < v < n, we
use the integral operators I,,_. by convolution with the homogeneous potential

2|7 as Ln— (f)(@) = |- |77 * f(2).

2. Case 0 < 7,72 <1

We can handle this case by using only conservation laws as in [1]. Let us
first introduce the following local existence result.

Proposition 1. Let 0 < v1,72 < n and n > 1. Suppose that Vi and Vs
satisfy the condition (2) and p € H*(R") with s > max(%-, ). Then there
exists a positive time T independent of m such that (4) has a unique solution
u € C([0,T); H°) with ||ullLeerrs < C|l|l#rs, where C does not depend on m.

Proof. The method of proof is almost the same as of [1]. From the decays of
V1, Vo and Hardy inequality it follows that

9) IV ufllzee S ull? g +lull? 22 < llullf.-

This inequality enables us to get the uniform boundedness of the existence
time 7 and the constant C' on the mass m. For the details, see the proof of
Proposition 1 in [1] or [8]. O

Lemma 1. Suppose that 0 < 1,72 < 2, and V < 0 and satisfies (2) and (3).
Let u be a local solution of (1) in C([0,T7; H?z) satisfying (5) for all t € [0,T).
Then if v1,7v2 < 1, then
10 sup |lu(®)|l. 1 <C1+ 2, £,
(10) S Il ;3 < CA+llell 1)
where v = max(y1,¥2).

If 0 <y <2 =1, then for sufficiently small ||pll 2 independent of ll(pllH%

2
11 sup |u{t)]| .1 <C1+ 2 )T,
(1) 3 Ol < 00+ ly)
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If 0 < v1 =752 =1, then for sufficiently small ||| L2 independent of ||cp||H%

(12) S (@) 43 < CA+ el y)-

If 1 <~ <2 and ||p||12 is sufficiently small dependently on ||<pHH% , then

13 sup Jlu(®)| .. <C1+ 2.0y,
(13) te[oﬂll Oy < CA+ el )

Proof of Lemma 1. From the estimate (9) and L? conservation, we have by
Sobolev embedding and interpolation that

()% < 2E@w)] + 2|V (u)]
SﬂE|+CZWW

i=1,2

<lely +C 3 leliz 2W’Ilsall“ +C Z el lall®

i=1,2 i=1,2

If v; < 1, then by Young’s inequality we get (10). If v; < 2 = 1 then by the
above argument for v; and the smallness of |||z that Cllp||2. < 1 forya =1
we get (11). If v; = 1, then for small ||¢||z2 so that 2C||¢||32 < 1 we get (11).
If v; > 2, then for any ¢ with

lllze < min (1,(87C7 (1 + Jlpll3, )70 ) "7 )

we have (12). O

Now using the conservation laws (5), we establish the global time existence.

Theorem 1. Assume that Vi and Vs satisfy the conditions (2) and (3). Let
0<1,2<1forn>220<ym,y2<1forn=1ands> % Let T* be the
maxzimal existence time of the solution u as in Proposition 1. Then if V > 0,
orif V<Oand~y <1, orif V<0 and at least one of v;s is 1 and ||| L2 is
small, then T* = co. Moreover ||u(t)||zs < C|l¢||mse“€®), where C does not
depend on m and E(yp) is a constant depending only on v;, ||<p||H% and E(p).

Proof. If V > 0, then
(14) lu@®% 5 < C(E@) + llplzz) = C(E@) + lellzs).

From Lemma 1 it follows that if v1,v2 < 1, and if one of v;5 is 1 and ||| 22
is sufficiently small, then

1
(15)  Ju®)l, 5 < Cllu®l; +llellis) = CU+lol? )™ for v<1,

2

1
(16) a2y < CO+[l2 ;)™ for one of 41 <7z =1.
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Now let us define a functional £ by
E(p) = E(p) +llel2: if V >0,
= (L+]lpl )™ if V <0 and y <1,
=(1+ ||‘P||fq%)ﬁ if V<0 and 7y <v2=1.
Then from (14), (15) and (16) and the generalized Leibniz rule, we have
[u() | zre

t
< llelle + / VP ()] z- dt
0

t
S el + 3 [ M Gl
i=1,2
(1)
(o), Nl 2o )

~;

t
S Mol + [l ol

Sl +£6) [l
Gronwall’s inequality shows that
lu@llme < Cllgll s exp(CE(P)?)-
This completes the proof. O
Remark 1. From the uniform boundedness on m for the solution u in Proposi-

tion 1 and Theorem 1, we obtain the similar results to those in [1] on the limit
problem as m — 0 and m — oc.

The first is the following. If u,, € (C N L>*)(H*) is the global solution of
(4) satisfying the same condition as in Theorem 1, then for any finite time T,
Um — Ug In LP(H?®) with s > % as m — 0, where ug is the global solution to
the massless (m = 0) equation (1) with up(0) = ¢.

Now let us consider the phase modulated function v, = e"™*u,,. Then one
can easily verify that the function v,, satisfies the equation

i0m = (Vm2 — A —m)vy, + F(vm), vm(0) =,
and equivalently
t
(18) m(t) = Un()p — i / Unn (£ — ¢/)F (vm)(¢') dt,
0

where Uy, (t) = e~ #(Vm?=A=m) et w,, be a solution of the nonlinear Schrod-
inger equation:

. 1
(19) 10 Wy, = —%Awm + F(wm), wmn(0) = .
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Let T and Ty  be the maximal existence time of the solutions um and wm,
respectively. Let T* = infy,s min(T;} Ty ) If s > 3 and T < T, then
Upy — Wy, — 0in LYY (H®) as m — oo. For the details of proof, see Propositions

2.4 and 2.5 of [1].

3. Case 0 < 71,72 < n+1

In [1] the global existence was shown with homogeneous potential |z|™7 for
the ranges of 0 < v < + and n > 2 by using the wave admissible Strichartz

estimate. Adopting and modifying the method of proof of Theorem 1, we have
the following.

Theorem 2. Assume that Vi and V, satisfy the conditions (2) and (3). Let
T S 2 < 5 ” and n > 2. ThenzfgoeH2 and if V>0, or V <0 and
Y1,72 < 1, or'V < 0,'y, < 1 and at least one of ;s is 1 and ||| L2 is sufficiently
small, or V<0andl< Vi < 2% and ||cp||Lz is sufficiently small, then (4) has

n—o

a unique solution u € C([0, oo) H> )ﬂLloc( a) where ¢ = (n_1)Ef r= 20

and o = ("E)a for some o < = but arbitrarily close to =5 +1

Proof. Given n, 1 and 72 choose a number « so close to %2+L1 that min(1 +

(—"%)O‘- - 1,1+ (";% — 1) > 0. Then for some positive number T to be

chosen later, let us define a complete metric space (X7, dr) with metric dr
by

XT,f{”GC([o,T];H%)nLqT(H )il g I H%—v—”}

dr(u,v) = [Ju -] o

LenbnLimd
where ¢, r, o are the same indices as stated in Theorem 2.
Now we define a mapping N : u — N(u) on X7, by

(20) N@)(t) =U(t)p — z/o Ut —t)F(u)t)dt'.

Our strategy is to use the standard contraction mapping argument. From
now on, we will prove that the nonlinear mapping N is a contraction on X7 ,,
provided T is sufficiently small. We will use another version of Hardy inequality
which can be easily shown by splitting integral regions, inside the ball with
radius R and its outside and by optimizing over R.

Lemma 2. Let 0 <~y < mn. Then for any 0 < e <n —~y we have
[ Zney (1| oo S Il [l

Taking 6 by 0 in the Strichartz estimate (7) and (8), the pair

T

L'n, 'y & Ln— 'y+e
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becomes a wave admissible one. Hence the Strichartz estimate together with
the estimate (9), Plancherel theorem, Lemma 2 and generalized Leibniz rules,
enables us to deduce that for some small 0 < € < n — 72,

N
I (u)”L%"H%OL%HT%
S .

S ey + 32 Mol lg e el 3

—c

1=1,2
Y / N P "
1=1,2 +E
GOSN P S e P
1=1,2
1 D T IR B
=12 'n—<+$
Sl + 3 Ml Tl s e
i=1,2
+ Z/ ol g Mol el g
1=1,2
Using Holder’s inequality for time integral, we have
NGO, y3 e
(22) <
ol + 32 Vol o o i Wl
1=

Now if we choose £ > 0 so that € < min;—1,2 (n - 7,1+ ﬁﬁg;_ﬁ - fyi), then

2n 2n 2n

e R R T e )

From the interpolation between L2 and L#=a=1-71 , it follows that

< —0; a9,
PV W

Jull,

where 6; = W(%’Y—L%T) Since 1v; < +1, if we choose « sufficiently close to = +1’

then we can make 6; be the value in the closed interval [1,2].
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Now using (22) and Sobolev embedding HT%_U — L™ N L”Aa—zﬁ—%), we
deduce that

[N ()l y-o SCllol g + D Tl ||UI| 1o)

q 152 LyH? HZ7°
H NL3 H Py H/

<C(lgll,y + (T +T%)07)
for some constant C. Here we have used the conventional embedding that if
1_
2(% —0) > n— « then H? 7 < L™ for any ry > r. Thus if we choose p and
T so that Cllg| 3 < § and C(T*~* +T1=%2)p® < £, then we conclude that

N maps from Xt , to itself.
For any u,v € X1,,, we have

dr (N (u), N(v))
SIF@) = FO)l, 3
S D (M (uf? ~ [o)ull 3+ - (o) =0l 1)

i=1,2

(24)

By Lemma 2 and Hélder’s inequality, we have for sufficiently small € > 0
2 2
Mol = P, s
S M (ul® = Pl 2z oo el oo 8

+ [ (fuf* ~ lvl2)“L2THS2*n “U“L2 LB

) i
ST U A [ ||||;ng_5)
| +pnu—vnmm(n L =Y
tollu=oll ||LNH2 + loll e 1)

1 . .
Since L2NH2 ° — L=t , by another Holder’s inequality with respect to
the time variable, we have

s (fuf? = o)l 3 S (T + T H)p%dr ()

Similarly,
s () (= W), 48
S Mo (0PNl = vl o g
(26) L P P
S ol s o, ey Arlo0)
+ [l

Y 7 W VR
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Hence we get

1 ey (01 (e — My gy ST+ T'=5)p%dr (u, ).
Substituting these two estimates into (24) and then using the fact cT'- % < %
for smaller T', we conclude that N is a contraction mapping.

For the global existence we adopt the time-continuity argument. Let 7™ be
the maximal existence time for the local solution u constructed as above. Then
we claim that T* = oo. In fact, if V and ¢ satisfy the conditions as stated in
the theorem, then from the estimates in Lemma 1 and (22), we have

- S £+ 3 THOE(0) = Tl

i=1,2

i_,»
3 o
ka

where £ (i) is defined as in the proof of Theorem 1, if 7; < 1 and it is defined

by (1 + ||ga“2% )Y for 4; > 1. If we assume that T < oo, then for sufficiently
small T depending on E(yp),

y-o. < CE(p),
L ()

where T; — Tj_1 =T for j < k —1 and Ty = T*. This means that

] ? s <Yl ,_, < (kCE(p))* < oo
Lq(O,T*;HTQ ) 1<j<k Lq(Tj—luTj?Hrz )
This is a contradiction to the hypothesis T* < co. We have just finished the
proof. O
Now using Theorem 1 and Theorem 2, we can also treat the potentials Vi, V,
with y1 < 27, T Se<iggoimg<m< n%f—l,wg < 7 respectively.

Theorem 3. Assume that Vi and Vs, satisfy the conditions (2) and (3). Let
O<m<izmmr <r< n—zf—l andn > 2. Then if ¢ € HZ and if V > 0,

or V<Oandv <1, or V< 0,1 <y < 2 and |pllzz is sufficiently

1
small, then (4) has a unique solution u € C([0,0); Hz) N LY (H? ™), where
qg= (—n%)—a, r= —Yf_ia and o = ("E)O‘ for some o < =& but arbitrarily close
to _2_n__

n+1

Proof. For the proof we have only to consider the boundedness of nonlinear
term F(u). It can be easily seen by (17) and (21) that

IF@I Gy 3 < D0V * Pl g + 102 Pl
ST gy + Tl 22 1l s
T H

which enables us to conclude the local existence by contraction argument and
the global one by time-continuity argument. O
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4, Case 2 < y1,72 <1
In this case, the small data scattering is considered as in [1].

Theorem 4. Assume that Vi and Vs satisfy the condition (2). Let2 < v1,v2 <

n,n>3ands > sy = maxi—1 28, where s; = & — =2, Then if p € H®
with ||@||meo sufficiently small, (4) has a unique solution u € (C'N L>*)(H?*)N

_nt2
L?*(H®,, ™ ). Moreover there is ™ € H® such that
n—2

lu(®) = U)ot |l — 0 as t — 0.

Proof. We will use the Strichartz estimate (7) with § = 1 and endpoint admis-
sible pair (g,7,0) = (2, 2 "Q—tlz)

To proceed the same strategy as proofs of above theorems, let us define a
complete metric space (Y3 ,,d) with metric d by

Vi, ={ve Lo(H) N PEHT) ¢ ol o preramse S Ry

[
d(u,v) = |lu— U”LooHsmmH:—"'
Then from the estimate (22) with s instead of 1, we have
IV sepe < Clllins 3 10 0, oy Wl
=1,
If we choose € > 0 so small that
. n—2
€ < i n—Yi,Yi — 2,28 + T

then we have
2n < 2n 2n 2n 2n

< <
n—2"mn—(y—¢ n—2-2(s;—0) < n—(yi+e)  n—2-2(s-0)
and hence by Sobolev embedding

IN (W)l oo grorpzmz—o < Cllellas + Il papyzo=e 1wl 2 prg=o 1ull Loz
Similarly, we also have
IN| oo groonpzgzo-e < Cligllaso + Cllull gz l1ull o g Il Lo oo
< Clipllmeo + Cp*R.

Hence if for any given ¢ we choose p satisfying that Cllp||ms0 < § and C p’R <
£, then
||N(U)I|L°°HSOOL2H50_G S p

and hence for some R and smaller p such that C|l¢||gs < £ and CpR? < £,
we have

~ R
IN@I s grsmpns= < 5 +CPR? < R
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This implies that N maps Y3 , to itself. Similarly, from (24)-(26), one can
show that d(N(u), N(v)) < 2d(u,v). This proves the existence part.
To prove the scattering, let us define a function ¢ by

—ga—z/ U(=t")F(u)(t')dt'

Then since u € Y, we have * € H®, and therefore
u(®) = Ue)o e S [ IF ) ae a
t

Sl [ lullyeo dt =0 a5 ¢~
W]

Remark 2. In case that +; > 2, more generally, we may assume that the po-
tentials V7 and V, are time dependent. If they are uniformly bounded with
respect to the time variable, every estimate concerning potentials works 5 very
well. For example, we can take Vi(x,t) = a(t)f/:(x) and Va(z,t) = b(t)Va(z)
for some functions a,b € L°(R) and V; with |V;(z)| < |z|~.

5. Case 0 < 1 <2< v2<mn

In this section, we consider the potentials V; and V2 with 0 < 14 <2 < 2 <
n such that
Vi(@)] S xqzi<aylzl ™™, [Va(@)] S X{|w|>1}'$|_72'

Then V € L7 if 0 <, < 2,7 > 2, and also V € L™ = ify1 =27 > 2"
Thus we have

WV ulllpe < ||V||L% Hu||i% for 0<vy <2,99>2,n2>3,
(27)

2n
IV s fulllie S WV ap i sy for =2 > ——n>4
L n=3 n
With this potential estimate we show the following theorem.

Theorem 5. (1) Let0 <y <2<y <nandn>3. Thenifs> % —1"—- then

there exists p > 0 such that for any ¢ € H® with |¢|lgs < p, (4) has a umque
S_J*

solution w € (C N L>®)(H®) N L2(H 7).

(2) Let y1 = 2,72 > 2 and n > 4. Then if s > L, then there exists

n—1

p > 0 such that for any ¢ € H*® with {|o||g: < p, (4) has a unique solution
€ (CNI®)(H) N LAHLT).
Moreover there is @7 € He 3such, that
lut) = U@®)¢ ™ las — 0 as t — oo,

where u is the solution constructed as above.
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Proof. For the simplicity of proof, we consider only the estimate of nonlinear
term F(u). The remaining parts follow readily from the same argument as in
the proof of Theorem 4.

As for the first part (1), we use the endpoint Strichartz estimate with
Schrodinger admissible pair (q,7,0) = (2, 22 nt+2) and have

Y n—27 2n

E @)l e SNV * ul?llrpoo llullzoors + 1V * ul* [ p2pg el ;) c2ns -

Using (27), Young’s convolution inequality (1+ + = 2 4 n=2 4 2) for the term
IV ¢ Julll 2, we have

VF@ e S Wl ol
52;%2 o L[R2,
For the second part (2), we use the endpoint Strichartz estimate with wave

admissible pair (g,7,0) = (2, 2(:__31 ) 241 and have

NF @) e S IV * [ulPllprpoe l[ull poorrs + 1V 5l r2mg Ml | 2oen

L2 n-3

The condition s > ”2—Jf is necessary for the embedding H

If we apply Young’s inequality as above with (1 + L= g2_—1 + 2—&-}31—) +3),
then we have that

IF @)l pimes S ul? oy ulleoms.
L2 n—3

For the embedding we need s > ”2—;1 This completes the proof of the theorem.
O
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