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SYMMETRIC SPACE, GEOMETRY AND TOPOLOGY

Inkang Kim

ABSTRACT. In this note we survey some recent results on symmetric
space, and related topics like rigidity, flexibility and geometry-topology
aspect of symmetric space, specially in the line of hyperbolic 3-manifolds.

1. Introduction

Recently there has been a tremendous progress on the Kleinian group the-
ory which had been initiated by pioneers like Ahlfors, Bers, Kra, Sullivan, and
has been developed and directed by W. P. Thurston last 30 years. Thurston
proposed a best-known frame, known as geometrization program for the clas-
sification of 3-manifolds. The most remarkable feature of this classification is
that he first introduced the Riemannian metric for a topological classification.
Inspired by the uniformization theorem for Riemann surface, he proposed 8 ho-
mogeneous geometries for the classification of 3-manifolds, and he worked on
hyperbolic geometry tremendously. His deep insight and results on Kleinian
group theory inspired many mathematicians and unified the realm of geome-
try, topology, dynamics and complex analysis. During the past few years, big
conjectures like tameness, density and ending lamination conjecture have been
settled down by his descendants. Also his geometrization program is completed
by the contribution of Perelman and Hamilton using analysis and non-linear
partial differential equations. We want to survey the origin of this research
area, namely symmetric space and related areas. This goes back to early 20th
century. This area has a root in semi-simple Lie group theory, ergodic the-
ory and Riemannian geometry as well. Symmetric space is a special kind of
Riemannian manifold which is homogeneous and with many symmetries as the
name suggests. Though it is a special Riemannian metric, it has rich enough
structures on which one can do Lie group theory, ergodic theory, geometry
and even topology, number theory and representation theory. It is initiated
by Poincare, Harish-Chandra, Lie, and many more. Recently by Mostow and
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Margulis, this field has been popularized and became an important branch
of mathematics. Tied up with a low dimensional topology, specially with a
3-dimensional topology, it presents a successful application to topology, as a
powerful tool for untouchable area of topology. This survey is far from being
thorough and complete, we just touch the one aspect of the gigantic glacier,
which is familiar with the author and which is related to author’s work.

2. Definitions and terminologies

A symmetric space of noncompact type is a Hadamard homogeneous Rie-
mannian manifold whose curvature tensor is parallel under the parallel trans-
port. The identity component of the isometry group is a semi-simple Lie group
of noncompact type. Let G be the identity component of the isometry group
of the symmetric space X of noncompact type. If K is a isotropy group of a
point zo in X, then X is identified with G/K. Denote the Lie algebra of G
(respectively K) by g (respectively t). Then there is a direct sum decomposition

g=top

with a Cartan relation [t,p] C p,[t,t] C ¢, [p,p] C t.
The killing form B defined by

B(Y, Z) = Tr(adY o adZ)

is negative definite on t and positive definite on p. Identifying p with a tangent
space of X at a point zp, one obtain G-invariant Riemannian metric on X.
The sectional curvature is given by curv(Y, Z) = ~||[Y, Z]||? and it is always
less than or equal to zero. Let a be the maximal abelian subalgebra of p. One
calls the dimension of a the rank of the symmetric space X. If the rank is 1,
then the symmetric space is strictly negatively curved. There are four kinds
of rank one symmetric spaces of noncompact type: real, complex, quaternionic
hyperbolic spaces and octonionic hyperbolic 2-plane. Their sectional curvature
is pinched between —4 and —1. If the rank is at least 2, then it is called a
higher rank symmetric space. The famous example is SL(n,R)/SO(n). Note
(exp a)zo is a maximal flat in X through zp € X.

By the standard theory of Lie algebra, one obtains the root space decompo-

sition of g
g9=0g0D Z Yo
aEA
The set asng = {H € a|Ja € A, a(H) = 0} of singular vectors divides a into
the finite number of components called Weyl chambers. Fixing a component
at amounts to choosing positive roots

At ={a € Ala(H) >0,VH € at}.
Furthermore if one sets
ni = Z Yo

aEAE
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one obtains the Iwasawa decomposition K AN where N = expn™. It is worth-
while to note that MAN fixes A*zq(0co) pointwise where M is the subgroup of
K fixing Az pointwise. The Weyl group W is M'/M where M’ is the subgroup
of K fixing Az globally and it acts transitively on the Weyl chambers of Axo.
For more details see [2].

Among the symmetric spaces, the most well-known space is a hyperbolic
3-space H® due to W. Thurston. It has a close relation to a geometry and
topology of 3-dimensional manifolds. Hyperbolic space H?3 is a complete simply
connected Riemannian manifold of constant curvature —1. The Poincaré ball
gives a model for hyperbolic space as the unit ball in R? with the metric

4dz?
(1—r2)2"
The boundary of Poincaré ball models is the sphere at infinity S, for hyperbolic
space and the isometries of H® prolong to conformal maps on the boundary.
The sphere at infinity can be identified with the Riemann sphere ((AZ, providing
an isomorphism between the orientation preserving group Isom™ (H?*) and the
group of fractional linear transformations Aut(C) = PSL2C.

A Kleinian group T is a discrete (torsion free) subgroup of [ som(H?). A
hyperbolic 3-manifold N is the quotient of hyperbolic 3-space H?3 by a Kleinian
group I'. The domain of discontinuity or discontinuity domain Q(I') of I' is the
largest [-invariant open subset of C on which T acts properly discontinuously.
If T is not abelian, then Q(T') inherits a hyperbolic metric, called the Poincaré
metric, on which I' acts as a group of isometries. One may then consider
N =NuUQI)/T and .N = ON = Q(I')/T to be the conformal boundary at
infinity of the hyperbolic 3-manifold N. See [1] or [30].

A compression body N is a compact oriented 3-manifold which is the bound-
ary connected sum of solid tori and trivial interval bundles over closed surfaces
of genus at least 2. A trivial interval bundle over a closed surface is not con-
sidered as a compression body. A compression body N is small if it is the con-
nected sum along the boundary of either two trivial interval bundles over closed
surfaces or an interval bundle over a closed surface and a solid torus. Otherwise
it is called large. The boundary ON of a compression body N has a unique
compressible component which is called the exterior boundary 8.N. The in-
clusion i, : 9N — N induces a surjective homomorphism 71 (0. N) — m1(IN).
The other components except exterior boundary form the interior boundary
aintN .

Given a compression body N, there is a convex cocompact representation
p: m(N) — PSL,C such that the interior of N is homeomorphic to M, =
H3/p(m1(N)) which induces p. We say that p uniformizes N [23]. The image of
p is a function group, i.e. there is an invariant component of the discontinuity
domain 2, under the action of p(m1(N)) on C. We can identify the Riemann
surface Q,/p(m1(N)) with the boundary ON of N. Under this identification
the exterior boundary 8, N corresponds to a unique invariant component of the

ds? =
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discontinuity domain. For more on the topology of compression bodies, see [4]
or [24].

3. General background

In 1960°’s, Mostow [26] proved a striking rigidity result about the lattices in
semisimple Lie groups.

Theorem 3.1. If 'y and I'y are isomorphic lattices in semisimple Lie groups
of noncompact type Gy and G4 respectively, then G1 = Gy and I'y and 'z are
conjugate.

In geometric terms, if M; and M, are locally symmetric manifolds with
isomorphic fundamental groups, then they are isometric. A bit later, Margulis
[22] proved the super rigidity theorem for higher rank symmetric space.

Theorem 3.2. IfT" is a lattice in a higher rank semisimple Lie group, it is
arithmetic.

Most recently, there is an entropy rigidity theorem for rank 1 symmetric
space by Besson-Courtois-Gallot [3].

Theorem 3.3. Let M™ be a compact negatively curved locally symmetric man-
ifold and N™ a compact negatively curved Riemannian manifold. Suppose there
s a map
f:M—N
so that the degree of f is nonzero. Then
deg(fYR(M) vol(M) < h(N)"vol(N),

where h denotes the volume entropy. The equality holds if and only if they are
locally isometric.

The volume entropy h(M) is defined as follows. Let M be the universal
cover of M. Take a base point zp € M. B(z, R) denotes the metric ball of
radius R around zg in M. Then

log vol B(z, R)

M) = iy SRR,

4. Kleinian group theory, hyperbolic geometry

In 1970’s as a part of his geometrization program, Thurston proved the
following important theorem. A 3-manifold M is atoroidal if it does not contain
any irreducible torus except boundary parallel ones. It is Haken if it contains
an irreducible surface, i.e., an embedded surface S so that 71(S) injects into
1 (M )

Theorem 4.1. If M is an atoroidal, Haken 3-manifold, then it admits a geo-
metrically finite hyperbolic metric.
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In the course of the proof of this theorem, the important case was the map-
ping torus case, i.e., M = S x [0,1]/ ~ where (z,0) ~ (¢(z),1) and ¢ is
a pseudo-Anasov map on the surface. Thurston used so-called the “double
limit theorem” for quasifuchsian manifolds. By Ber’s uniformization theorem,
a quasifuchsian group is determined by the pair of conformal structure at infin-
ity, so the set of quasifuchsian groups is homeomorphic to 7(S) x 7(S), where
T(S) is a Teichmiiller space of S. This is the set of convex cocompact hyper-
bolic metrics up to isotopy on S x R. If a sequence of quasifuchsian metrics
(tn,sn) is given as in above parametrization, such a sequence converges alge-
braically if ¢,—A, s,— 8 in Thurston’s compactification of T(S) so that two
projective laminations A, 8 fill up the surface S, i.e.,

i\ 0) +i(8,¢) > 0,

for any simple closed curve c. This is a double limit theorem. Right after
this monumental theorem, Thurston conjectured that such a theorem should
hold for general hyperbolic 3-manifold, specially a hyperbolic 3-manifold with a
compressible boundary. Originally he conjectured that if a sequence of convex
cocompact hyperbolic metrics is given on a handle body, and if the conformal
structures at infinity converge to a projective lamination in Thurston boundary
which lies in a Masur domain, then the sequence converges algebraically. Let N
be a compression body with exterior boundary 8. N and p : 71 (N) — PSL,C
be a discrete and faithful representation with associated quotient manifold
M, = H3/p(m1(N)). A meridian is a homotopically nontrivial simple closed
curve m on the exterior boundary 8. N which is compressible in N. A meridian
may be seen as an element in the space PML(8.N) of projective classes of
measured lamination on the exterior boundary d.N. The set of projective
classes of weighted multicurves of meridians in PML(J.N) will be denoted
by M and its closure in PML(J.N) by M’. For a small compression body
which is the boundary connected sum of two trivial surface bundles over closed
surfaces or the boundary connected sum of a trivial surface bundle over a closed
surface and a solid torus, set

O :={X e PML(IN)| i(\,u) > 0 for all u € PML(J.N) such that
there is v € M’ with i(u,v) = 0}.
Otherwise, in a large compression body case, set
O :={Ae PML(O.N)| i(\p) >0 for all p € M'}.

The set O is called the Masur domain. We will say that A € ML(8.N) is in
O (resp. M) if its projective class is in O (resp. M’).

Recently the author together with co-workers settled down this conjecture
for general hyperbolic 3-manifold with a compressible boundary [20].

Theorem 4.2. Let M be a compact irreducible atoroidal 3-manifold with bound-
ary, and po : M (M)—PSL(2,C) a geometrically finite representation that uni-
formises M. Let (my) be a sequence in the Teichmiiller space T(OM) which
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converges in the Thurston compactification to a projective measured lamination
[A] contained in PD(M). Let q: T(OM) — QH(po) be the Ahifors-Bers map,
and suppose that (p, : m(M)—PSL(2,C)) is a sequence of discrete faithful
representations corresponding to q(my,). Then passing to a subsequence, (pn)
converges in AH(M).

Consider a compact irreducible atoroidal 3-manifold M with boundary. By
Thurston’s uniformisation theorem for atoroidal Haken manifolds, there is
a representation po : m (M) — Isom(H3) with the following properties :
po(m1(M)) is geometrically finite, H®/po(m1(M)) is homeomorphic to int(M),
and any maximal parabolic subgroup of po(m1(M)) is an Abelian group of rank
2. Such a representation is said to uniformise M. Any quasi-conformal de-
formation of po(m1(M)) also uniformises M. By the Ahlfors-Bers theory, the
space @H(pg) of quasi-conformal deformations of py up to conjugacy by ele-
ments of Isom(H?) is parametrised by the Teichmiiller space of the boundary
of M. More precisely, there is a (possibly ramified) covering map, called the
Ablfors-Bers map T (Oy<oM) — QH(po) whose covering transformation group
is the group of isotopy classes of diffeomorphisms of M which are homotopic
to the identity.

The space QH (po) is a subspace of the deformation space AH(M). This
deformation space AH(M) is the space of discrete faithful representations
p: m (M) — Isom(H?) up to conjugacy by elements of PSLo(C). It is en-
dowed with the compact-open topology which is also called an algebraic topol-
ogy. We shall consider sequences of representations given by sequences in the
Teichmiiller space whose images under the Ahlfors-Bers map diverge in QH (po)
and study their convergence in AH(M).

Thurston introduced in [31] the notion of doubly incompressible curves. This
can be extended to measured geodesic laminations in the following way:

We say that a measured geodesic lamination A € ML(OM) is doubly incom-
pressible if and only if :

- 3n > 0 such that i(A\,0F) > 5 for any essential annulus, Mobius band or
disc F.

We denote by D(M) C ML(GM) the set of doubly incompressible measured
geodesic laminations and by PD(M) its projection in the projective lamination

space PML(OM).

5. Length spectral rigidity

In Riemannian geometry, one of the main theme is to study when two Rie-
mannian manifolds are isometric. One of the tools is to compare closed geodesic
lengths. Two manifolds M and N have the same marked length spectrum if
there is an isomorphism

p:m(M)—>mi(N)
so that Iy (v) = In(p(7)) for any v € 71 (M) where {5:(y) denotes the geo-
desic length in M of the homotopy class of . It is conjectured that if M and
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N are negatively curved and if they have the same marked length spectrum,
then they are isometric. This conjecture is known to be true only for a surface
case by [28]. When one manifold X is compact locally symmetric negatively
curved, it is shown by [3] that any compact manifold whose geodesic flow is
C*-conjugate to that of X is isometric to X. Note in general if two negatively
curved manifolds have the same marked length spectrum, their geodesic flows
are only C%-conjugate. Specially if one manifold is compact real hyperbolic,
and the other manifold is compact negatively curved then the same marked
length spectrum implies two manifolds are isometric [13]. When the manifolds
are locally symmetric ones (not necessarily convex cocompact nor topologi-
cally tamed in Thurston’s sense) which do not have proper totally geodesically
embedded submanifolds, it is proved by [14, 15, 17, 9] that the same marked
length spectrum implies that two manifolds are isometric. For nonriemannian
case, specially for convex real projective structures and affine structures, see
(16, 18].

It should be noted that the unmarked length spectrum sometimes does not
determine the geometry. Even in surface case, there are numerous examples of
the pair of hyperbolic surfaces of genus greater than or equal to 4 with the same
unmarked length spectrum which are not isometric. The general construction
is due to [29]. In surface case, the unmarked length spectrum determines the
Laplace spectrum and vice versa by means of the Selberg Trace Formula. Y.
Colin de Verdiere [32] showed that the Laplace spectrum give the unmarked
length spectrum. Suppose Y is a negatively curved compact manifold and X is
a locally symmetric negatively curved manifold and they are at least dimension
3. Then it is conjectured [3] that if they are isospectral and there exists nonzero
degree map between them, then they are isometric.

The length spectrum A(M) of a Riemannian manifold M is the set of lengths
of closed geodesics with multiplicity. There is an analogous conjecture. The
set of negatively curved metrics on a fixed compact manifold with a fixed set
of lengths of closed geodesics, forms a compact (or finite) set in the space of
Riemannian metrics. One can rephrase this as an unmarked length rigidity.
There is also very little progress in this direction. First McKkean in 70’s showed
[25] that there is only finite number of hyperbolic metrics with a given spectral
set, i.e. the set of closed geodesic lengths with multiplicity. Later Osgood,
Phillips and Sarnak [27] showed the compactness of isospectral metrics on a
closed surface. Much later Brooks, Perry and Petersen [5] showed the same
result for closed 3-manifolds near a metric of constant curvature. More recently,
Croke and Sharafutdinov [8] showed a local isospectral rigidity on a negatively
curved closed manifold. For Laplacian spectrum and related problems, see
[10, 12, 29, 33].

If we restrict our attention to the locally symmetric manifolds, there are
several tools available. Specially for hyperbolic 3-manifold case, one can use
Kleinian group theory which has been developed last decade. Here [7] is a
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finiteness result for isospectral infinite volume hyperbolic 3-manifolds, which is
a generalization to higher dimensional manifold of the result of [25].

Theorem 5.1. Let M be a non-elementary conver cocompact real hyperbolic
3-manifold with a length spectrum A. Then there are only finite number of
hyperbolic 3-manifolds homotopy equivalent to M with the length spectrum A.

For convex cocompact hyperbolic 3-manifold with incompressible boundary,
see [19)].

6. Local rigidity of lattices in symmetric space

By the seminal work of Corlette, lattices I' C G in quaternionic and octo-
nionic space is superrigid, i.e., if ¢ : '—=G’ is a homomorphism into a semi-
simple Lie group with a Zariski dense image, then ¢ extends to a homomor-
phism from G to G'.

Let I" be a lattice in a symmetric space S. Consider a bigger symmetric space
S’ which contains S as a totally geodesic submanifold. I' naturally acts on S".
Is it possible to deform T in Iso(S’)? In some cases, the answer is yes. There
are examples of lattices in PSO(3,1) which can be deformed in PSO(k, 1) for
k > 3. But in general this is not always true. For example a uniform lattice
in PSU(n,1) cannot be deformed in PSU(m, 1), m > n due to K. Corlette [6].
Following the arguments used in [11], one can see that the fundamental group
of a convex cocompact rank one locally symmetric manifold of dimension > 3
is isomorphic to that of a CW complex whose complexity is controlled by the
volume of the manifold. So for a fixed upper bound for the volume of the
convex core of the manifold, there are only finitely many possible fundamental
groups. Then suppose that a lattice in a symmetric space S can be deformed
to a convex cocompact discrete group in S’ where S is totally geodesically
embedded. One can perturb so little that the volume of the convex core is
bounded above by a uniform constant. Then by the observation above, this
is possible only for finitely many lattices. This shows that most of cases, we
cannot deform a lattice in a bigger symmetric space.

In this note we give another example of local rigidity [21].

Theorem 6.1. Let ' be a uniform lattice in PSO(4,1) which can be regarded
as a discrete group in PSp(n,1),n > 1 in a canonical way by identifying HE
with a quaternionic line. Then T' cannot be locally deformed in PSp(n,1).

The idea of a proof is to use Raghunathan-Matsushima-Murakami result.
We can push the result a litter further to deal with non-uniform lattice with
an assumption.

Theorem 6.2. Under the same assumption with a non-uniform lattice, there
18 no local deformation preserving parabolicity.

This fact has to do with L?-norm of forms. Note that Raghunathan-Matsu-
shima-Murakami result holds only for finite L?-norm forms. We strongly believe
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that in our case, we do not need the condition of preserving parabolicity. The
same statement holds for uniform lattice in SU(1, 1) and in SO(3, 1) considering
SU(1,1) € Sp(1,1) € Sp(n,1) and SO(3,1) C SO(4,1) C Sp(1,1) C Sp(n, 1).
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