J. Korean Math. Soc. 44 (2007), No. 5, pp. 1103-1119

A MULTISCALE MORTAR MIXED FINITE ELEMENT
METHOD FOR SLIGHTLY COMPRESSIBLE FLOWS IN
POROUS MEDIA

Mi-Young Kim*, EUN-JAE PARK', SUNIL G. THOMAS, AND MARY F. WHEELER}

ABSTRACT. We consider multiscale mortar mixed finite element discreti-
zations for slightly compressible Darcy flows in porous media. This paper
is an extension of the formulation introduced by Arbogast et al. for the
incompressible problem [2]. In this method, flux continuity is imposed via
a mortar finite element space on a coarse grid scale, while the equations in
the coarse elements (or subdomains) are discretized on a fine grid scale.
Optimal fine scale convergence is obtained by an appropriate choice of
mortar grid and polynomial degree of approximation. Parallel numerical
simulations on some multiscale benchmark problems are given to show
the efficiency and effectiveness of the method.

1. Introduction

We consider a nonlinear second order parabolic equation that models slightly
compressible Darcy flow in porous media (3]:

9
(1.1) 7 0Pu®) =V Kpuw(@)(VP — gpu(®)VD) = f  inQxJ,
(1.2) p=py, ondfdxJ,
(1.3) p=po inQx{0},

where ¢ is the porosity of the medium, p the pressure, p,, the fluid density, K
a symmetric, uniformly positive definite tensor with components representing
the absolute permeability divided by the viscosity, g the magnitude of the
gravitational acceleration, D the depth, and f external mass flow rate; and
0 c R% d =2 or 3, is the domain and J = [0,T|. The equation of state is
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given by
@—ui = cydp,
w
where c; is the fluid compressibility constant. For simplicity we have assumed
Dirichlet boundary condition, but more general boundary conditions can be
treated by the analysis and computations.

Mixed finite element methods have been successfully applied to several areas
of interest, in particular, fluid flows in porous media [11, 27, 29]. Two features
of the mixed method are that it enjoys local mass conservation property and
provides accurate fluxes whose normal components are continuous across inter-
element boundaries. A number of papers and books deal with the analysis
and implementation of mixed methods applied to linear elliptic problems on
conforming grids (see, e.g., [25, 22, 6, 5, 12, 21, 29, 13] and [26, 7], repec-
tively). Nonlinear elliptic and parabolic problems are treated in [20, 23, 17].
For multiscale approximation of the mixed system, the reader is referred to
[8, 18]. Recently, in [2], Arbogast et al. proposed and analyzed multiscale
mortar mixed methods for modeling Darcy flow. This approach is based on
domain decomposition theory [15] and mortar finite elements [4, 1]. In this
paper, we further investigate the multiscale mortar mixed method and extend
the results to the nonlinear parabolic problem.

We denote by W5P(S) the standard Sobolev space of k-differentiable func-
tions in LP(S). Let || - ||x.s be the norm of H*(S) = W*2(S) or HF®(8)4, where
we omit S if S = Q and drop k if £ = 0. Let WEP(J; W29(Q)) denote the
usual set of functions with the norm

k P ;
sy ={ 3 [ ] )
—oJJ Wie(Q)

where if p = oo, the integral is replaced by the essential supremum.
We make the following assumptions on the data: There is a positive constant
« such that

(A1) ¢ € L>°(D) and * < ¢(x) <o,

81'
%w(Wt)

(A2) py, € W2*(R) and < < pu, p,, Pl < @,

(A3) K € L®(R)%*? and 1 < ¢TK(x)¢ < a for any £ € R™.

We will denote by C a generic positive constant independent of h, unless
otherwise stated.

The remainder of the paper is organized as follows. Our method is formu-
lated in the next section. After defining some projection operators in §3, we
derive related elliptic projection error estimates in §4. A priori error bounds are
then established in §5. In §6, we present the results of several numerical exper-
iments which show the efficiency and effectiveness of the method. Conclusions
are given in the last section.
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2. Formulation of the method

_ Let 2 be decomposed into nonoverlapping subdomain blocks ;, so that
Q= U?Zlﬂi and Qz‘ﬂQj =@ fors # 4. Let Fiyj = 6Qiﬂé‘Qj, I'= U1§i<j§nri,j7
and I'; = 8Q; NT = 99Q;\09 denote interior block interfaces. Let

n
V= H(div;%), V=@V,
i=1
W; = L2(%), W =Pw:=L*Q),
=1

My;=HY*(;;), M= P My,

1<i<j<n
It is useful to introduce a flux variable
u = —Kpu(p)(Vp - gpu(p)VD).

Then we solve for the pressure p and the velocity u satisfying

(2.4) K~'p (p)u=-Vp+gpu(p)VD  in2xJ,
(2.5) %qﬁpw(p) +V-u=f in Q x J,
(2.6) p=p, ondlxJ,
(2.7) p=po onx {0}

The weak form of (2.4)-(2.7) is given by seeking a map {u,p,A} : J —
V x W x M such that, for each 4,

(28) (K—lp;l(p) u, v)ﬂi = (pav : V)Qi - <>‘7V : Vi)n

(2'9) ~ (pp, v+ Vi)BQi\F + (QPW(p)Vva)Qw vevV;

(210)  Ggpul) e, +(V wwlo = (o, weWs

(211) Z(N?u'yjh—'j =0a ,U'EM7
j=1

with the initial condition p = po, where v; is the outer unit normal to 5.
Note that )\ is the pressure on the block interfaces I'. Let 75 ; be a conforming,
quasi-uniform finite element partition of Q;, 1 < i < n, of maximal element
diameter h;. Let h = maxi<;<n hi. Note that we allow for the possibility that
Th. and 75, ; need not align on T; ;. Define 7, = U, 7s; and let & be the
union of all interior edges (faces) not including the interfaces and the outer
boundary. Let

Vi x Wy CV; x W,
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be any of the usual mixed finite element spaces, (e.g., those of [25, 22, 6, 5]).
Then let

Vy = @Vh,i, W, = @Wh,i-
i=1 i=1

Although the normal components of vectors in V; are continuous between
elements within each block €);, there is no such restriction across I'.

Let the mortar interface mesh 7y, ; be a quasi-uniform finite element par-
tition of I'; ; with maximal element diameter H; ;. Let H = maxi<;j<n Hi,;-
Define T0H = Uy<icj<nTni ;- Denote by Mp,; C L*(T; ;) the mortar space
on I'; ;, containing either the continuous or discontinuous piecewise polynomi-
als of degree m on Ty ; ;, where m is at least £+ 1 and k is associated with the
degree of the polynomials in Vy, - v. Now let

My = @ Mhu.ij
1<i<jsn
be the mortar finite element space on I'. We require that the following condition
be satisfied. For each subdomain Q;, define a projection Qp; : LA(Ty) —
Vi - vi|p; such that, for any ¢ € L2(T;),

(2.12) (¢ — Qnid,v-vi)r, =0, vEV,

Assumption 2.1. Assume that there exists a constant C, independent of h
and H, such that

(213) ”M”O,Fi,j < C(”Qh,i/f'”O,Fi,j + ”thj/'l'“(]yri,j)7 ue My, 1<i< Jj<n.

Condition (2.13) says that the mortar space cannot be too rich compared to
the normal traces of the subdomain velocity spaces. Therefore in the sequel,
we tacitly assume that A < H < 1. This is not a very restrictive condition, and
it is easily satisfied in practice (see, e.g., [32]). In the following we treat any
function p € My as extended by zero on 9. We remark that 7y ; ; need not
be conforming if My ; ; is discontinuous.

The mixed finite element approximation of (2.8)-(2.10) is given by seeking
a map {un,pr, g} :J — Vi x Wy x Mg such that, for 1 <i <n,

(2.14) (K 7'pyt(pn) un, V), = (pr, V- V), = Au, v - i)y

— (Po, v - Vi)aa\r + (90w (Pr)V D, V), v eV,

0 ,
(215) (¢&pw(ph)’w)ﬂl + (v : uh7w)Qi = (f7 w)Qia w e Wh,i7
(216) > {w,un-vyr, =0, p e My,

j=1
with the initial condition p(0) = po, L?(Q2) projection of po onto W It should
be noted that within each block 2;, we define a standard mixed finite element

method, e.g., (2.15) enforces local conservation on each grid cell. Moreover,
w, - v is continuous on any element face (or edge) e ¢ I'U 89, and (2.16)
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enforces weak continuity of flux across these interfaces with respect to the
mortar space My.

The unique solvability of the system (2.14)-(2.16) follows from condition
(2.13) and the standard argument given in [24].

3. Some projection operators

We first introduce some projection operators needed in the analysis. Let ZF
be the nodal interpolant operator into the space M, which is the subset of
continuous functions in My (where we may use the Scott-Zhang [28] operator
to define the nodal values of 9 if 9 is not smooth enough to form Zf; ¢ directly).
For any ¢ € L2(Q), let ¢ € W, be its L?(Q) projection satisfying

(p—@,w)y=0, weW,.

Recall that (2.12) defines the projection Qp; : L*(I;) = Vi vilr, .
We recall that, for any of the standard mixed spaces,

V -Vii=Whg,
and there exists a projection II; of (H¢(Q;))? NV, onto Vi,; (for any € > 0),
satisfying amongst other properties that for any q € (H*(£:))*N'Vy,
(3.17) V- Lq=Vq,
(3.18) (q) - v = Qnila - vi)-
Moreover (see [19, 1]),

(3.19) ITiallo,e, < Clllalle.0; + IV - allo.0.)-

We assume that the order of approximation of Vj; is k + 1 and W ; is
!+ 1 (and recall that My approximates to order m + 1). In all cases, [ = k or
[ =k — 1, and we have assumed for simplicity that the order of approximation
is the same on every subdomain. Our projection operators have the following
approximation properties:

(320) |l —Zayller,; < Clllsr, , H™, 0<s<m+1, 0<7 <1,
(321) o —@llo < Cllpll-h", 0<T<I+1,

(3.22)  ||V-(a-ILQ)llo,e; <CIV-qlrah”, 0<7<141,

(323) |la —ILdlloe; < Cllallreh", 1<r<k+1,

(3.24)  ||¥ — Qnitpll-rri,; S ClYher, A7, 0<r<k+1,0<7<k+1,

(325  @-TLa)-vill-rr,, < Cllalnr 777, 0T <k+1, 0< T <k+1,

where ||+ ||_- is the norm of H~7, the dual of H™ (not Hg). Bounds (3.21) and
(3.22)-(3.25) are standard L*-projection approximation results; bound (3.23)
can be found in [7, 26]; and (3.20) is a standard interpolation bound.
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It is convenient to define the space of weakly continuous velocities, which is
the space

Vhy() = {V eEVy: Z(Vlgl 'lli,,u,>ri =0V JTRS MH} .

=1

The following lemma holds; see [1, 2].

Lemma 3.1. Under hypothesis (2.13), there exists a projection operator 1o :
(HY2+5(Q)) NV — Vo such that

(326) (v : (Hoq - Q), w)Q =0, we&Wh,
and
(3.27) |Toa—Hal < CY_ llall-+1/2.0.k HY?, 0<r<k+1,

i=1

(3.28) Mo —all < €Y (lallrah” + llallr1o0h HY?), 1<r<k+1,

=1
n

(3.29) |Moa—al < CY_ llalina k" "/2HY?, 1<r<k+1,
i=1

wherein Ilq|o, = IL;q.

In the analysis, we will use the nonstandard trace theorem

(3.30) lgllrr.; < Cllallrri/2.0:
(see [16, Theorem 1.5.2.1]). For any function v € Vy,; (see [25, 7])

(3.31) (@, v - oq, < Cllallyz.e0: IV H@ivan-

4. Elliptic projection

It is frequently valuable to decompose the analysis of the convergence of
finite element methods by passing through a projection of the solution of the
differential problem into the finite element space [30]. Let the solution {u,p, A}
be projected into the mixed finite element space by the map {1,p, 5\} J -
Vi x Wy, x My given by

(432) (K_lp;l(p) ﬁ7v)Qi = (ﬁv V- V)Qi - <5\,V ’ Vi>Fi
— (s, v - vidaaar + (9puw(P)VD,V)o, Vv E Vi,
0 -
(433) ((ﬁb—tpw(p)7w>ﬂz + (V ", 'w)ﬂl = (f’ w)Qm w e Wh,i;
(4.34) > {u @i v, =0, p€ Mp.

J=1
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Subtracting (4.32)-(4.34) from (2.8)-(2.11), we see that the elliptic projection
satisfies the following equations:
(4'35) (K_lpl;l(P)(u - ﬁ)7v)Qi

:(p"ﬁvv'v)ﬂi—‘<P—5\7V'Vi>1“” Vevh,ia
(4.36) (V-(u—u),w)o, =0, wE€ Wy,

n

(437) Z(N? (u - ﬁ) : Vj>rj =0, pweMpy.
j=1

We note that we can eliminate X from the mixed method (4.35)-(4.37) by
restricting Vj, to V0, the space of weakly continuous velocities; that is, the
problem is equivalent to finding @t € V0 and p € W3 such that

(438) (K 'pp'(p)(u—1),v)

:Z((p—.jj’vv)ﬂz —<P,V'Vi>f‘i): VEVh,Oy
i=1

(4.39) D (V- (u=i1),w)q, =0, w € Wh.

i=1
Then, the following estimates are derived in [2].
Lemma 4.1. For the velocity @ and the pressure p of mized elliptic projection

(4.32)-(4.34), if (2.13) holds, then there exists a positive constant C indepen-
dent of h and H such that

(4.40) |V -(u=@)o<CY (V- ullroh”, 1<r<i+1,

i=1

@41) Ju-1tllo <CY_ (Ipllosrjp0H* Y2+ lullroh”

=1

+lullyrjo0h HY?), 1<r<k+1,0<s<m+1,

4.42) fp~pllo < C 3 lpllrab™ + 3 (Iplsp1j20H 2

i=1 i=1
I - ullrh” H + [l b7 H + [l 0,h7HY2),
where 1 <r<k+1,0<s<m+1,and 0 <7<+ 1.

Remark 4.1. Note that it follows from the inverse inequality and Lemma 4.1
that

(4.43) || Loo(g;p00 )y < O
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when H = O(h%2s=D), which at its limit is H = O(h%¥/(@™+1)). When d = 2,
this is not a restriction since it is the asymptotic scaling which maintains
the optimal convergence rate for the lowest Raviart-Thomas-Nedelec space
RTNy, k = | = 0. In particular, if, say, m = 2, then we should take the as-
ymptotic scaling H = O(h?/5). When d = 3, we need to assume H = O(h*/?)
and if we restrict to the case of diagonal tensor K and Raviart-Thomas-Nedelec
{RTN) spaces on rectangular grids, we can use superconvergence of the velocity
to drive the boundedness (4.43) [21, 13, 14].

We shall need estimates for 2 (u — 1) and 2 (p - p).

Lemma 4.2. There ezists a positive constant C independent of h and H such
that for0 <s<m+1, '

o= @)l

Ou Ou . “  Op 5=1/2
< i - Gl =i+ A oryatt ™)

Proof. Noting that ), (Z§p, v - vi)r, = 0 for any v € Vo, we rewrite (4.38)-
(4.39) as follows:

(449) (K 7'p, (p)(Tou — @), v)
= (K~ py (p)(Tou — w), v)

n
+ Z((ﬁ -5,V -V)g, —{p—Igp,v-vi)r.), VEVho,

=1
n

(4.45) > (V- (Tlou — @), w)q, =0, w € Wh,.

i=1

Differentiate (4.44)-(4.45) with respect to ¢, take v = 2 (Mou—1),w = 'aa_t (p—p)
and sum the equations to arrive at the following equations.

(02" () 2 (Lo — ), 5 (Tgu — @)
= (K103 (6) O (Tlou — w), 2 (Hlgu — )

4.46
- (1K= 57 ) (0~ ), 5 (TTou — )

+
+ Z<%( =P — D), %(ng — 1) vi)r,)-
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Using (3.31), (3.20) = I?{(a

py ), and V- 2 (Ilpu — @) = 0, we see that

0
5 Zap)

S (2 @ip —p), o (Tow — ) v,

=1

= . 0Op Op 9] .
<Cy. 75 55 — glh/z,am”a(ﬂou — )| z(divi0)
i=1

", Op s 0 -
< Czugﬂsﬂ/z,mﬂ Uz”a(ﬂou—u)ﬂo,ﬂm
i=1

where the first inequality follows by noting that Z¢p—p € H, 0({ (T;) if we define
Z5,p = p on dQ; \ I'. Therefore, it follows from (4.46) and (A2)-(A3) that

0 u 0 ~ Op s
Hg(ﬂou—u)llo < C{IIE(HOu— w)lo + [lu—allo +; 12 gs1/2.0.H 1/2].

d
Using a(l’[ou) = Ho(%—ltl) and the triangle inequality, we complete the proof.
]

Lemma 4.3. There ezists a positive constant C independent of h and H such
that for0 < s <m+1,

0 ~ 0 - - . op s+1/2
155 = Pllo < Cll 55 (u = o + lu = allo + ; 15 ls+1/20.H :
Proof. Use a duality. Let ¢ be the solution of

g . .
-sz—a(p—p) in Q,

p=0 on 09,
satisfying elliptic regularity,

(4.47) lellz < Cll; (p Plo-

Differentiate (4.38) with respect to t and take v = TIoVy and use the weak
continuity of v to see that

n

(4.48) ||~(P G =D (56 -5),V TV,

i=1

=3 (K00 () - B Lo

0
- T oV vidr).
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Using (A2) and (A3), the first term on the right is estimated as

> (1K 05 () (u = D], T V)
(4.49) i=1

< C(II%(U — @[ + [lu—alhllell-

For the second term on the right in (4.48) we have

o . 0p
(3 ~Th gy ToVe v,
3)
= (5 ~Thg, (now ~ V) - vi + (Ve = V) -vi + Vi vi)r,

Op
< Zl Hat Por., (1o Ve - L) - willor,,
@50 I
+ (I Ve ~ V(P) - villo,r; ;)

op
+Z|| Hat” 2.0, IVe - villiy2r,

< C'Hs+1/2|| clst120.l¢ll20, 0<s<m+l,
using (3.20), (3.27), and (3.25). The proof is completed with (4.47)-(4.50). O

Remark 4.2. Note that the inverse inequality and Lemma 4.3 imply that

o5
(4.51) | = 5 ”L°°(J L)) < C.

5. Error estimates

In this section we derive the error estimates for the pressure and the velocity.
Theorem 5.1. Assume the appropriate inverse inequalities for 4 and p given
in Remarks 4.1 and 4.2. Then, there ezists a positive constant C independent
of h and H such that

P — Prll Lo (722 + 0 — unllL2(r;L2(0)2)
< C[”P — Pllwroo(ssp2y) + llu — ﬁ||L2(J;L2(n)d)]-
Proof. Subtracting (2.14)-(2.16) from (4.32)-(4.34) gives the following equa-
tions for the error:
(K_lp;)l(ph)(ﬁ - uh)7v)9i = (ﬁ - phvv : V)Qi - <5\ - )‘va . V'i)Ti

(5.52) VA
+ (K Yoz (p) — py (pr))T, Vo,
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+ (g(pw(p) - pw(ph))VD7 V)Qi v E Vhﬂ?

5] - N
(¢E(Pw(10) — pw(Pr), wa, + (V- (8~ ), w)a;

(¢ (p’w( ) Pw(P))aw)Q“ wE Wh,iv

n
Z ,u,, u- uh Vj>1“j =0, ume My,

j=1

Choose v =1—up, w = p—pp, and p = A— )y and add the resulting equations
to see that
(5.53)

(K~ pg ! (pr) (0 — up), @ — up))q, + (¢%(ﬂw(ﬁ) — pw(pr)), P — Pr)os

= (K~ Y(p3' (0) — py’ (pr)) T, & — un)q, + (9(pw(p) — puw(pn)) VD, u —ur)e;
+ (6 0ud) — o)), 5~ Pr)ac

Note that as in [30, 24]

(-l 3n)

(5.54) - o
G| o [ At ogasan - lp-mia,
and
P—Pn
659 [ of " aut+oedidez sl mifa

for p!, is bounded below positively due to (A1) and (A2). Also, note that by
(A2) and (A3)

-1 = ~ - 1.
(5.56)  (K~'pg" (pa)(@ - wn), @ —wn)oa, = 10— unllgg,

Summing (5.53) over 1 < i < n and using the mean-value theorem, the chain
rule, (A1), (A2), we arrive at

PPh
// o5+ E)E dE da + = [ — wl?

<Clp phllllullmollu uhl|+||p phllllu us|

+(lp - ﬁllllallo,m + lla(p =Bl — pall-
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Using (4.43), (4.51), the triangle inequality, and ab < ea® + %, we obtain
Lo [ der et - wi?
dt Q 0 PP a2 Rl

- . 0 - .
< Cllp = pull? + lip — 8% + I3~ AN + la~all?].
Integrate in time, use (5.55), and apply Gronwall’s inequality to obtain

B~ pallzee(rrz@) + 1T = unllp22)0)

- 0 . ~
< Clllp — Bllz2¢s:2 ) + |l a(P — P)l2iz2@) + llu—all 20209
An application of the triangle inequality completes the proof. O

Note that combining Theorem 5.1, Lemmas 4.1-4.3, and Lemma 3.1, we see
that optimal fine scale convergence is obtained by an appropriate choice of
mortar grid and polynomial degree of approximation.

6. Numerical results

In this section we present numerical results for some benchmark problems
[18]. In particular we consider two problems: the idealized diagonal channel
problem and the fluvial reservoir problem (85th layer of the 10th SPE compar-
ative project), that were previously studied for incompressible flow by Aarnes
et al. by applying several multiscale mixed methods. Similar solutions were
obtained using mortars and they compared favorably. The solutions shown
here are of log |u| for slightly compressible flow. A fluid compressibility factor
of 4.0E-05 was assumed. All computations were run in parallel on up to 16
processors at the beowulf cluster in the Center for Subsurface Modeling at the
University of Texas at Austin.

6.1. Diagonal Channel

This problem has proved quite challenging to most multiscale methods.
Here, a single high-permeability channel goes diagonally from the source to
the sink. The domain is a square 64m x 64m x 1m. The permeability is 100
times as high along the diagonal as it is elsewhere. A unit source and unit
sink are located at either ends of the high-permeable layer (which is 3 elements
thick, away from the boundary). The domain is partitioned into 64 subdo-
mains (8 x 8 coarse mesh). Each subdomain is further sub-divided into an 8 x 8
fine-mesh (giving a fine element size of 1m x 1m).

The Figure 1 shows the reference solution on the left, on a single-domain
(64m x 64m fine mesh) and the mortar solution on the right on an 8 x 8
subdomain partition. Further, we find that by applying a posteriori error esti-
mates loosely based on [31], the mortar degrees of freedom can be chosen to be
coarser away from the regions where the error in the solution is higher, while
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FIGURE 1. Diagonal channel: Reference and mortar solutions.

preserving the accuracy of the solution. These are shown in Figure 2 on a 4 x 4
coarse mesh partitioning.

E‘ z VELEMAES L‘_ . ol
B ooneon

FIGURE 2. Diagonal channel: Residual based errors and
coarse-mortar solution.

6.2. Fluvial Reservoir

As a second example, we considered a more realistic fluvial reservoir prob-
lem, where the permeability field contains many narrow high flow “channels”.
This permeability data was taken from Layer 85 of the 10th SPE Comparative
Project [9]. For comparison purposes, although the true measurements are in
feet, the solution was calculated in SI units as in [18]. The fine mesh consisted
of 60 x 220 elements. Sources and sinks are placed in a five-spot pattern, with
a unit source in the middle and sinks of strength 1/4 each at the four corners.
The true (reference) solution and the solution on a 5 x 11 coarse mesh (55
subdomains) using mortars are shown in Figures 3 and 4. The mortar degrees
of freedom were again chosen coarse where the errors were small. The errors
were highest at the bottom-left and top-right corners of the domain because of
the very low permeability, yet equal flow rates at the sinks in these corners.
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z TCOF Y 7

3 . VM
. 2.0000E+Q4 . 2.0000E-01
- v 1.4376E-01

1.4266E.02
1.0247E.02

3.9436E.03
2.2720E-03

VELEMRES

267674

F1GURE 4. Fluvial Reservoir: Residual-based errors and coar-
se mortar solution.

7. Conclusion

Multiscale mortar mixed finite element method [2] has been extended to a
nonlinear parabolic problem. Both theoretical error estimates and computa-
tional results on multiscale benchmark problems have been presented. These
computational examples, especially for compressible flows, have proven chal-
lenging for emerging multiscale algorithms. Our simulation results are among
the first to have been performed on a parallel cluster.

A posteriori error estimators for the mortar spaces have been applied in the
computations. Details of this work including analysis and parallel scalability
will appear in a future paper.
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