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OPTIMAL LINEAR CODES OVER Z,,

STEVEN T. DOUGHERTY, T. AARON GULLIVER, YOUNG HO PARK,
AND JOHN N. C. WonNaG

ABSTRACT. We examine the main linear coding theory problem and study
the structure of optimal linear codes over the ring Z,,. We derive bounds
on the maximum Hamming weight of these codes. We give bounds on
the best linear codes over Zg and Zg of lengths up to 6. We determine
the minimum distances of optimal linear codes over Z4 for lengths up to
7. Some examples of optimal codes are given.

1. Introduction

The main coding problem for linear codes (in one of its forms) is to find the
largest minimum weight for any linear code with a given length and cardinality
over a given alphabet. The problem is widely studied for codes over fields but
not for codes over rings. Over the past decade codes over rings have gained
in importance for both practical and theoretical reasons. Codes over Z4 have
been particularly of interest and we give special attention to those codes here.
In general, the question is to find the maximum number of elements that can
fit in a space where the distance between those elements is a maximum. Of
course, these are two conflicting aims, namely, adding more vectors generally
requires that the minimum distance between vectors reduces. This question
has many applications outside of mathematics in information theory and many
applications inside of mathematics, for example, in the study of lattices and
designs. In this paper we shall survey the major results necessary for studying
this question, add new results and solve the question using the results and
computation for some small lengths.

Some families of codes are of particular interest because they are often the
optimal codes for a particular set of parameters. For example, Maximum Dis-
tance Separable (MDS) codes and Maximum Distance with respect to Rank
(MDR) codes are very useful in examining this fundamental question. We shall
examine these codes as well.

We shall begin with some definitions. For any undefined terms from coding
theory see [20] or [21]. For a more elementary introduction see [18]. For general
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results on codes over finite rings see [25]. A code C of length n is a subset of
Z™ . If the code is a submodule then we say that the code is linear. In this
work all codes are assumed to be linear unless specified otherwise. The ambient
space is attached with the standard inner product, i.e., [v,w] = Y v;w;. We
define the orthogonal to the code C by C+ = {v | [v,w] = 0 for all w € C'}. The
Hamming distance between two vectors is the number of coordinates in which
they disagree. The minimum Hamming distance of a code, denoted by dg (C),
is the smallest distance between any two distinct vectors. The Hamming weight
of a codeword is the number of non-zero coordinates in the vector. For linear
codes dy (C) coincides with the smallest non-zero Hamming weight in the code.
Other weights will be defined later for various rings, for a given weight X we
define dx(C) as the minimum weight of a non-zero vector for that weight. As
usual we use [n, k, d] to refer to a linear code of length n, rank £ and minimum
Hamming weight d and we use (n, M, d) to refer to a code (possibly non-linear)
that has length n, M elements and minimum Hamming distance d.

For linear codes it is obvious that the minimum Hamming distance is the
same as the minimum Hamming weight. Two codes are said to be equivalent if
one can be formed from the other by permuting the coordinates and changing
the signs of coordinates. This differs from the definition for codes over fields,
which allows the more general multiplication of coordinates by units.

For a code C, the weight enumerator of the code for a given weight X is

defined by
Wx (C) — Z mwt(c),
ceC
where wt(c) denotes the weight of the codeword c.

If C = C+, a code is said to be self-dual. All self-dual codes over Z4 up
to length 15 and some codes of length 16 have been classified {5, 23, 15]. All
self-dual codes over Zg up to length 6 and some codes of length 8 have been
classified [6]. All self-dual codes over Zg up to length 8 have been classified
[2]. Beyond these codes, no classification of codes over Z, has appeared in the
literature, except for the optimal rate 1/2 codes over Z; for lengths up to 8
7.

2. Types and ranks

Unlike codes over fields we do not have dimension for codes over rings so we
need to use their rank and type, which we shall now describe. We know from
[12] that any finitely generated submodule of Z7, is isomorphic to

(1) Zm/flzm@zm/fQZm@“‘®Zm/stm7

where f; are positive integers with f1 | fo | - | fn | m. For such a submodule C'
of Z , define the rank of C as |{i | f; # 1}| and the free rank as |{i | f; = m}|.
We say that the code is a free code if the free rank is equal to the rank.

For codes over Zjge it is easy to produce a generator matrix from which we
can read the rank. Any linear code over Z,. has a generator matrix which can
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be put in the following form:

I, A Az Arg o e At s41
0 plk, pAQ,g pA2,4 t pA2,s+1
0 0 p?ly, p*Azs - e P2 Az .11
@ S : :
0 0 0 iy 0 pe"lfks pe_lAs’S_H

where A; ; are matrices in Z,.—i+1. Note that this has appeared in incorrect
forms often in the literature. Here the rank is simply the number of rows of
the generator matrix. In this case the type is {(1)*, (p)*2, (p?)%s, ..., (1)}
and has [[_, p'*~"*1%: elements. The rate of a code over Zy, is l—og—mn(‘ﬂ, for
D ..

e—1

codes over Zye this is realized as —~

It is not always possible for a matrix to be placed in this form for codes
over Zn,. For example, the code generated by (3,22) over Zss cannot be put
into this form, see [19] for a detailed study of this question. It does however
generate a free code, even though it cannot be put into a form with a unit in
the first coordinate. This is because of the following proposition.

Proposition 2.1. Let v = (v1,...,0n) € Z7, and let d = ged(vy, ..., Up,m).
Then |[(v)| = 7.

Proof. First we see that Zrv = 0 so there are at most T elements generated by
v. Moreover % is the smallest v such that yv = 0. Otherwise yv; = 0 for all
1 and % divides v; for all i and ’—,’;— > d which is a contradiction since d is the
greatest common divisor.

Assume 0 < o < 3 < & and av = (v then (o — B)v = 0 which implies
a—,@zOora—ﬁ>%.Itmustbethata—ﬁzosoa:ﬁ. [

The situation for the generator matrices of codes over Z, is much different
than for codes over fields and even for codes over Zy:. First we do not have
the usual properties of linear independence since we have a module and not a
vector space. Secondly, we do not have a form which is as easily described as
the case for Zpe.

We say that the codewords vi,..., vy generate C if every vector of C is
a linear combination of the v;, i.e., each v € C is of the form ) a;v; where
a; € Zn,. 1t is not as easy to describe a minimal generating set (basis) in this
case. For a full description of the many nuances of this problem see [19].

The generator matrix form and the rank can be quite different for codes over
Z.» than for the case for code over a field or over Zy.. For example, consider
the code generated by the vector (2,3) in Z2. By the previous proposition we
have that |{(2,3)}| = 6. Hence the rank is 1 but ?) g
code but would appear to have rank 2 by examining the generator matrix, it

also generates this
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does not have rank 2 however. Moreover, the second matrix cannot be brought
into the form of the first matrix by elementary row operations. We can however
describe the type. Namely if a code is of the form

(3) Zm/flzmﬂazm/f?Zm@"'®Zm/fnzm7
then the code is said to be of type {(a1)",(a2)*2, (as)**, ..., (as)*}, where
a1 < a2 < - < as < m and @ = 1, and has Hle(g:—)k’ elements, where

a; = 7 and k; = {7 | fi = fi}|. For a description of the generator matrix

see [19]. We can say that if a code has rank r then there exists a basis with
r elements for that code by the above description. It follows that a code over
Z,, of rank k is a free code if and only if the code has mF elements and has
rank k.

If C is a linear code of type {(a1)*, (a2)*, (a3)*,...,(as)*} then C* is
a linear code of type {1772 ks, (Z)ks . (Myks (Z)k2}, see [19]. This gives
that |Cl|Ct| = m™.

If a set of vectors satisfies the usual definition of linear independence, i.e.,
3" a;v; = 0 implies ; = 0 for all ¢, then we note that the code generated by
these vectors is a free code. A linear code can also be described in terms of its
parity check matrix H, i.e., v € C if and only if Hv? = 0. Similar to codes
over fields we have the following.

The minimum Hamming weight of C is d if and only if any d — 1 of the
columns of H are linearly independent but some d are not. This follows from
the following argument. Let L; be the columns of the parity check matrix H.
There exists a vector v € C of weight d if and only if 3 o; L; = 0 where there
are precisely d non-zero «;. Hence if no d — 1 are linearly dependent but some
d are then the minimum weight of C is d.

However the result is not true if the columns are only independent in the
sense that a linear combination of the vectors summing to 0 implies the coef-
ficients are non-units, since a single column can be independent in this sense
but be a multiple of a divisor of m and then C can have minimum distance 1
without there being an all zero column in H.

The well known Singleton bound for codes over any alphabet of size m (see
[21] for example) gives that

4 dg(C) < n—log,(IC]) + 1.
For linear codes it is also shown in [12] that
(5) du(C) <n—rank(C)+ 1.

This is a stronger bound in general unless the linear code is a free code in which
case the bounds coincide.

We recall the following definition. If C is a code over Z, of length n with
dy (C) = n — rank(C) + 1, then we say that C' is a Maximum Distance with
respect to Rank (MDR) code and if the rank is equal to the free rank then we



OPTIMAL LINEAR CODES OVER Zn, 1143

say that it is a Maximum Distance Separable (MDS) code. For a full description
of these codes see [12].

3. Chinese remainder theorem

‘We shall describe how to use the Chinese Remainder Theorem to construct
codes over Z,, where m is not a prime power.
Let ¥, : Z — ZI with r dividing m, with

U.(c1,...,cn)=(c1 (modr),...,c, (modr)).
Ifm = [{ ¢ where g; is a prime with q; # g;, ¢ # j then define ¥ : Z, — EBZZg,-
by '

Tler, ... cn) = (\Iqul (1, ren), Wye (Cl,...,cn),...,‘I/qZk(Cl,...,Cn)).

The Chinese Remainder Theorem gives that the inverse map is a module iso-
morphism. Let C1, Cy,. .., Ck be codes where C; is a code over Z ¢, and define
the code

CRT(Cl, Co,... ,Ck) = {\Il_l(vl,vg, N ,’Uk) | v; € CZ}
The code CRT(C1,Cs,...,Ck) is called the Chinese product of codes Cy, Cy,
..., Cy. It is easy to see that |CRT(C1,Ca,...,C)| = fol |C;]. For a full
description of these codes see [7] and [12].
Denote supp{v1,va,...,vn) = {j | v; # 0}.

Lemma 3.1. Suppose m = rs with (r,s) = 1. Letv € ¥.(C). Ifu € C
such that ¥.(u) = v and ¥ (u) = 0, then supp(v) = supp(u). In particular,
wt(u) = wt(v).

Proof. We have u = v+rw for some w. Clearly if u; = 0, then v; = ¥,.(u;) = 0.
Conversely suppose v; = 0. Then u; = rw; and ¥ (u); = rw; = 0 (mod s).
Since (r,s) = 1, this implies that w; = 0 (mod s). Thus u; =0 (mod m), i.e.,
U; = 0. (I

Lemma 3.2. Let C = CRT(Cy,Cs,...,Ck), then dy(C) = min{dc, }.

Proof. By Lemma 3.1 if v € C; then applying the CRT to v and the all 0 vector
produces a vector with the same Hamming weight as v. Hence we have that
di(C) can be at most min{dc,}. If there were a non-zero vector w in C' with
weight less than this, its projection to some qui would be a non-zero vector
with weight less than the smallest of all the minimum weights of C;, which is
a contradiction. 0

It is clear that any code over Z,, is the Chinese product of codes over rings
with prime power cardinality. Hence we see that the fundamental questions of
coding theory need to be examined over Zy. and then the results can be used to
describe the more general case. Specifically, the best minimum weight possible
for a code over Z,, is determined by the best possible minimum weights of
codes over prime power rings.
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4. MDS and MDR codes

We shall examine the structure MDS and MDR codes. These codes, when
they exist, must be optimal since they meet the Singleton bound. Some of the
results in this section were first shown in a different form in our paper [10].

Lemma 4.1. If C is a linear MDS code over Z,, of rank r and type {a'fl, a’;"’,

.., af} then k; =0 fori> 1.

Proof. If k; > 0 for any i > 1 then [C] < m". The bound given in (5) prevents
the code from meeting the bound given in (4). O

This means that any linear code that is MDS must be a free code.

Let v € C C Zp. where C is an MDS code, then p°~1v has Hamming weight
less than or equal to the Hamming weight of v. Hence the minimum weight
vectors of C either have no coordinates with a multiple of p°~! in them or they
consist entirely of coordinates with a multiple of p in them.

Let C be an MDS code over Z-, which of course means that it is a free code,
and let C’ = p*~1C, then by a result in [9] we have that dcr = d¢. Let B be the
code over Z, formed by sending ap®~! to a. We note that |C'| = | B|. It is well
known that if C' is an MDS code [12] then C is a free code with |C| = (p®)*. It
follows that |C’| = p* and so B is an [n, k, d] code. If C is MDS then we have
n—k+d=1so Bis an MDS code over Z,. This gives the following theorem.

Theorem 4.2. If there exists an MDS code over Zye of rank k and length n
then there exists an MDS code over Z, of dimension k and length n.

Knowing that the only binary MDS codes are R, = (111---1), E, =
(111---1)+, {0}, and F3, the natural corollary to this theorem is the following.

Corollary 4.3. There are no non-trivial linear MDS codes over Zge.
In [12] the following is shown:

Lemma 4.4. IfCy,, Cx,, ..., Ci. are codes over Zy,, Zy,, ..., L, then if Cki'
is an MDR code for all i (not necessarily the same rank), then CRT(Cy,, Ck,,
..., Ck,) is an MDR code.

It is also shown that the converse of this is not true. This can happen
because the projected code may have a lower rank. For example, a code over
Zg with generator matrix

Is A A
©) ( 0 2I, 24, )
has rank 7 but ¥5(C) has rank 3.

However, if the code over Z,, is a free code with rank k&, then for r dividing
m, the code ¥,.(C) is a free code with rank k.

Lemma 4.5. For any code C over Z,, and r dividing n, duy(C) < du(¥-(C))
unless ¥,.{C) # 0.
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Proof. Take any nonzero vy € ¥,(C). Then there exists a v € C such that
v = vg + rw for some vector w. If m = rs, then sv = syp € C. Now we simply
note that wtc(sv) = wic(svp) = wiy, (¢)(vo), which proves the lemma. O

Lemma 4.6. Suppose C is a free code of length n over Z,, and m = rs. Let
vo € Z' C ZY,. Then vy € U,.(C) if and only if svg € C.

Proof. Suppose vy € ¥,(C). Then there exists some codeword v € C and a
vector w such that vg = v + rw. Thus svg = sv € C. Conversely, suppose
svo € C. Let ¢ : Z* — C C Z, be an isomorphism and ¢(e;) = (gi1; - - -, gin)-
where the e; are a standard basis for Z%. Then C = {uG | v € Z,,} and
the n x n matrix G = (g;;) is invertible over Zy,, since ¢ is an isomorphism.
Let svg = uG for some u € Z". Then svoG~! = u, and hence we can write
u = su*, where u* € Z". Now we have that svg = uG = su*G, which implies
that vop = v*¥,(G) (mod 7). Therefore vy € ¥,.(C). O

Lemma 4.7. Suppose C is a free code of length n over Zy, and m =rs. Then
dg(¥,.(C)) =du(C) or du(¥,(C)) = du(C).

Proof. Suppose di (¥,(C)) > dg(C). Take v € C with wt(v) = dy(C). Since
wi(¥, (v)) < wt(v) = dg(C) < dg(¥,(C)), we have ¥,.(v) = 0, i.e., v = rup for
some vy € Z". By Lemma 4.6, v € ¥4(C). Now dg(C) = wt(v) = wt(vo) =
du(¥5(C)) > du(C).

We have that dg(¥,.(C)) > dy(C) if and only if the codewords of C of min-
imum weight all have the form rw for some vector w. Using this fact, it is easy
to construct such codes. For example, let C' = ((6,6,0,0,0,0),(0,0,1,1,1,1))
defined over Zys, then dg (¥2(C)) = 4 and du(¥s(C)) = 4, while d(C) = 2.
Therefore Lemma 4.7 does not hold for non-free codes.

Summarizing these results we have the following. Let C' be a free code.

(i) If C is a code over Z,m, then its projections ¥,;(C) all have the same
minimum distance dg (C).

(i) If C is a code over Zn,, then its projections ¥,.(C) have minimum distance
at least dg(C), and if m = rs then one of ¥,(C) and ¥s(C) has minimum
dy(C).

It follows that dg (¥,.(C)) > di(C). Hence, if C is an MDS code over Zy,,
then ¥.,.(C) is an MDS code over Z,. This, together with Lemma 4.4 gives the
following.

Theorem 4.8. Let m = [[ ¢i* where ¢; # q;, © # j. An MDS code of length n
over Ly, exists if and only if an MDS code of length n exists over Ze. .

Of course there can be non-linear MDS codes when there are no linear ones.
For example, it is well known that there exists a (4,m?,3) code over Z, if
and only if there exists a pair of mutually orthogonal Latin squares (MOLS)
of order m (see [18] for example). We know that there exists a pair of such
squares for all values m > 2 except 6. Hence there are non-linear MDS codes
over Z,, of length 4 for all m # 2,6.
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Theorem 4.9. There are non-trivial MDS codes over all Zye for p > 2.
Proof. The code generated by

1 011

01 1 2
has (p®)? elements and length 4. If v; = (1,0,1,1) and v, = (0,1,1,2) and
av) + fBvs has Hamming weight less than 3, then « + 8 =0 and a + 28 =0

giving that o = 8 = 0 since the ring is not of characteristic 2. Hence the
minimum weight is 3 and the code is MDS. O

Corollary 4.10. There exist non-trivial MDS codes over all Z,,, m # 2°.

Proof. Let m = [[ ¢’ be the prime factorization of m. Simply apply the CRT
map to non-trivial MDS codes over Ze:. If ¢; = 2 then the CRT of a trivial
code with a non-trivial code still results in a non-trivial code. O

Let m = [1gi, ¢ # 2, ¢; # ¢5, ¢; prime.
For each ¢;, 2 <1 < g, if {a1,0a2,...,a0-1} C Zy; — {0}, for each i.
Consider the following matrix.

1 1 e 1 1 0
a1 az 0 Gp—q 0
2 2 2
a1 042 vt aé_l O O
(7)
a;™? o2 - a”? 00
D N S (|

This matrix is a parity check matrix for an [¢+1,¢+ 1 —r,7+ 1] MDS code
over Zg,.

Theorem 4.11. Let m =[] g, ¢; # 2, ¢ # q;, ¢ prime. If2 < p < min{g;}
then there exists an MDS code over Z,, for allm, 2 <m < pu.

Proof. Apply the CRT map to the MDS codes over Z,,, which have the parity
check matrix given in (7), as long as m < p. O

In [14], MDS codes over Z,, are related to a combinatorial structure by
showing that there exists a set of s mutually orthogonal Latin k hypercubes of
order m if and only if there exists a [k + s, n*, s+ 1] MDS code over Zn,.

5. Torsion codes over Zg- of length n

Let C be a code over Z,.. We make a similar definition to the one given in
[11] and in [22). Namely we define the following codes over the field Z,. For
1 < i < e define

(8) Tor;(C) = {v (mod p) | p'v € C}
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and
(9) Res(C) = Torg(C) = {v | there exists u with v+ pu € C}.

Given a generator matrix over Zy. of the form:

I, A1 Ao . Age—1
0 ply, pAip e PALe—1
(10) 0 0 Pl o p*Azei 7
0 0 v pT e, p T Aeiet
the code Tor;(C) is the code over Z, generated by:
I, Ao1 Aoz - Age-1
0 I, Az - Aie
(11) .
60 - Iy Aje—1
We can compute the cardinality of C' in general by
o ()F T eml(e—j)k
12 C| = _— ki — P j=0l€=J g,
(12) C] g( ) )% = (p)

Given a code C over Z,. we have that

(13) [ Tor:(C)| = [] Inl",
3=0
and using (12) gives
e—1 e—1 1 e—1
a9 [[ror©l =[]l = [[@Z=* = @ZC™ =|cl.
5=0 s=0j=0 5=0

Hence we have the following theorem:

Theorem 5.1. For a code C over Zye we have that

e—1
IC| =[] ITors(C)]-
s=0

If the code is free then rank(Torg(C)) = rank(C). Let T; be the generator
matrix of Tor;(C) and let R; be the rows of T;. We have that a generating set
of Cis

{RO,pRl, e 7pe—1Re——1}-
The following lemma can be found in the proof of Theorem 4.2 (iii) of [22].

Lemma 5.2. If C is a code over Zpe then min{du(Tor;(C))} > du(C).
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Proof. If v € Tor;(C) then there is a vector with the same Hamming weight in
C, namely p*v which gives the result. O

Let C be a linear code over Z,, where C = CRT(Cy,...,Cs), then the
minimum weight of C is less than or equal to the minimum weight of T'or;(C;)
for all ¢,j.

The next theorem follows from the results of this section.

Theorem 5.3. The mazimum attainable minimum weight of a code over Zp,
with m = [[;_, ¢, where q; is a prime and ¢; # q; for i # j, is bounded above
by the best attainable weights of its component codes over prime order fields,
Fy,.

6. Bounds for linear codes

For a code C over Z,, the standard sphere packing bound still applies,
namely an (n, M, 2t + 1) code satisfies

M((g)—f—(?)(m—1)+...+(?>(m_1)t)Smn'

The standard proof applies. The Plotkin bound for codes over any finite Frobe-
nius ring was generalized in [16] and the Griesmer bound was generalized in
[24].

Consider a code C over Zye with a generator matrix of the form given in
(2). Let C; be the code generated by

(15) (0 -+ pIi,, PAitrire PAivrags - DAttt ).

The elements in the vectors of C; are all multiples of p. Let ¢, :C; = Z 2
by @, (jp’) = j. '
Lemma 6.1. Given the above construction, ®,:(C;) is a linear code over Zpye-i

of lengthn — 3" j<i k; and rank k; with the same Hamming weight distribution
as Ci-

Proof. The proof is straightforward noticing that the initial coordinates with
0 in them have been deleted. O

This lemma shows that if there is a vector of Hamming weight h in C
then there is a corresponding vector with the same Hamming weight in a code
®,:(C;) over Zye-i. Let Ape(n,r) be the highest minimum weight possible for
a linear code over Z,e of rank r and Ape(n,{k1,kz,...,ks}) be the highest
minimum weight possible for a linear code over Zye of type {ki,k2,...,ks}.
Then we have the following theorem.

Theorem 6.2. Ape(n, {ki, ko, ..., ks}) <min{Ape—i(n — 3, kj, ki) }.

Let A,y (n,r) be the highest minimum weight possible for a linear code over
Zy, of length n and rank k. First, the following lemma is clear.
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Lemma 6.3. If r| < 73, then Ap(n,r2) < Ap(n,r).

Theorem 6.4. Let m = [],p}* be the factorization of m into prime factors.
Then

Ap(n,r) = max Ao (n,r).

Proof. For a code C over Z,,, we know that dg (C) = min; dH(\I/p‘ili (C)). By a
result of [19], the rank of C is the maximum of the ranks of ¥ 2. (C).

Let dpaz = Ap;j (n,r) = max A (n,r). For i # j, choose C; to be the
repetition code (11---1) over Z,s: of rank 1 of length n, and take C; to be
the code of length n and rank r with minimum distance dmae- Then C =
CRT({C;};) has minimum distance dmaz-

Suppose C is any code over Z,, of length n and rank r. Then there exists
some j such that \Ilp;lj (C) has rank r. Then

d(C) = min dy (¥ = (C)) < dig (2 (C)) < A5 (0,7) < s
This proves the theorem. 0

We know from ([7]) that CRT(Cy,Cs,...,C;) has cardinality []|C;| and
has minimum Hamming weight min{dx(C;)}. Let B (n, M) be the highest
minimum weight attainable from a code of length n over Z,, with M vectors.

This gives the following theorem:

Theorem 6.5. If m = []p}* is the factorization of m into prime power factors
then

Bu(n, Q) = min{ Bz (n, @)}
where [[Q: =@

As an example of this theorem, it is clear that the best codes attainable for
Zs can be determined simply by examining the best binary and ternary codes.
In general, the best codes attainable over Z can be determined by examining
codes over the rings Zy« where p is a prime.

Let

M =M, ={weZ,.||(w)| <p}=pLy.

Lemma 6.6. Suppose vi,...,v—1 € Zj. are linearly independent. If v, ¢
(v1,...,v0-1, M), then vy,...,v_1,v; are linearly independent.

Proof. Let Z;l a;v; = 0. If a; = 0, then a; = 0 for all 4, and we are done. We
assume that a; # 0. If a; is a unit, then v, € (v1,...,v:—1), & contradiction.
So suppose that a; = —fa for some divisor a # 1,p° of p® and a unit 3. Let
ab = p®. Then Bav, = Z:;i a;v;. Multiplying both sides by b, we obtain
0= Zf;i ba;v;. Since v1,...,v._1 are linearly independent, we have that
ba; = 0 for all i. This means that a | a;, say a; = ab;, for all <. Then
a(vy —ZE;} biv;) =0, 1.e., vy = Zf: bsv; +bw € (vq,...,v—1, M) for some w.
This contradicts our assumption. [
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Lemma 6.7. If vy,...,v; € Z%, are linearly independent, then
[{(v1,...,v, M)| = ple=Dr+t,
Proof. 1t is clear that
(vi,...,v5, M) ={a1v1 +--+aw+pw | 0< a; <p, w € Zy. }.

Suppose that a1v1 + - - -+ agvy +pw = by + - - - + by +pu. Then (ag —bi)vi +
-+ (ag — by)vy + p(w — u) = 0, which implies that p*~'(ay — b1)v1 + -+ +
p°"(a; — by)vy = 0. By the linear independence, p | a; — by, i.e., a; = b; for all
i. Since |M| = p(¢~17, the lemma is proved. a

n-1\ p*F-1
< — .
d—2 pd—2 -1
Then there ezists a free code over Zpe of length n and rank k with minimum
distance d.

Theorem 6.8. Suppose

Proof. We shall construct an (n—k) xn parity check matrix A with the property
that no d — 1 columns are linearly dependent. The first column vector can be
any vector v; ¢ M = M,, where r = n — k. Suppose we have chosen { — 1
columns vy, vs,...,v;—1 so that no d — 1 are linearly dependent. If

V¢ ¢ U(’l)il,’l)i2,...,vid_2,M>.,

where the union is taken over all possible choices of d— 2 columns from the { —1
columns, then no d — 1 from the ¢ columns vy,...,v; are linearly dependent.
Such a vector v; always exists if |U(vi,, viy, - . ., Viy_,, M)| < p®". We know that
the size of this union is less than or equal to the number of ways of choosing
d—2 columns from ¢ — 1 and multiplying by the size of the generated space and
subtracting all but one copy of M which is common to all sets in the union.
Then we have that for all ¢t < n,

IU(Uinvim”ind—wM)I

( ;:; ) [(v1,v2,...,V4-2, M)| — << 2:; ) _1) |M|

n—1 - — - -
( d— o ) (p(e 1)7‘pd 2 _p(e 1)7‘) +p(e 1)

_ plevr (( nol ) (p?~2 — 1) +1>

< p*.

IA

IA

This proves the theorem. O

Notice that the inequality is independent of e.
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z:; <%Z;:T1.Ifd>n—k+lthenthe

right side of the equation is less than or equal to 1, so no codes with minimum
weight greater than n = k + 1 can exist. This is, of course, the well known
Singleton bound. However, if d =n — k 4+ 1 we need

n—1 pn-—k__l
< .
n—k—1 pn‘k—l—l

n—1

n—k—1

Consider the inequality (

We see that p < p%:—:__l—l < p+1 and that ( ) is a constant. This

gives the following.

Theorem 6.9. Ifp > < n i ;i 1 > then there exists an MDS [n,k,n—k+1]

code over ZLpe.

By the equivalence shown in [14] we have the following corollary.

n-—1

Corollary 6.10. For all p > ( n—k—1

> there exist n — k Latin k-hyper-

cubes of order p°.

Moreover using the Chinese Remainder Theorem we also have the following.

Corollary 6.11. Let m = [[p{* with p; # p; wheni # j. Ifp; > (n T_L;i 1)
then there exist [n,k,n — k + 1] MDS codes over Zn,.

7. Codes over Zg4

Linear codes over Z, have received a great deal of attention since their
introduction with respect to the Gray map. Here we consider optimal linear
codes over this ring up to length 7.

We shall describe two maps to the binary field. The first is the standard
Gray map, namely v : Z4 — F3 by %(0) = 00, (1) = 01,4(2) = 11,9(3) = 10.
This map is a non-linear weight preserving map.

The second map is ® : 2Z, — Fp by ®(2) =1, ®(0) = 0.

There are three weights attached to vectors over Z4. The Hamming weight
of a vector is the number of non-zero coordinates in the vector. The Lee weight
of the vector is the Hamming weight of its image under the Gray map 1. The
Lee weight of a vector v = (v1,v2,...,v,) over Zy is also y_ min{v;, 4 — v;}.
The Euclidean weight of a vector v = (v1,va, .. .,v,) is > min{v?, (—v;)?}. We
denote the minimum Hamming weight of a code C by dg(C), the minimum
Lee weight by dz.(C) and the minimum Euclidean weight by dg(C).

Lemma 7.1. If C is a linear code over Z4 with no vectors having a 1 or 8 in
them then ®(C) is a binary linear code with the same Hamming weights as C.
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Any linear code over Z, is permutation equivalent to a code with generator
matrix

I, A A
(16) ( 0 2Iy, 243 )’
where I, is the k by k identity. A code of this form is said to be type {1%1, 2k2},

It has rank k; + ko and contains 451252 elements. The rate of the code is
(k1 + %)/

Lemma 7.2. If C is a code over Z, then dp(C) < 2dy(C) and dg(C) <
4d(C).

Proof. Given a vector with Hamming weight d the highest possible Lee weight
is if its only non-zero coordinates are 2, and in this case it has Lee weight
2d. The same applies for the Euclidean weight except that this vector has
Euclidean weight 4d. O

This bound is in fact rarely met since the Euclidean and Lee weight of a
coordinate with a unit in them is 1. Hence vectors with small Hamming weight
with few coordinates with a 2 in them produce vectors with small Euclidean
and Lee weights. If there are minimum weight vectors with no coordinates with
a 2 in them then dg(C) = di(C) = dg(C).

For codes over Z4, Lemma 4.1 gives that if C' is a linear MDS code of type
{1%1 2k2} then ky = 0.

Corollary 4.3 gives that there are no non-trivial linear MDS codes over Zs.

Of course there are non-linear Zs MDS codes. For example, a [4,42, 3] code
is formed by a pair of MOLS of order 4.

In [13] the following bounds were given:

(17) [dE - 1J < 1 — rank(C),
Zl;) VL = lJ < n — rank(C).

A code meeting the bound in (17) is MEDR, and a code meeting the bound
in (18) MLDR.

Theorem 7.3. If C is MEDR or MLDR then C is an MDR code.
Proof. Follows from Lemma 7.2. a
Theorem 7.4. There are no non-trivial MDR codes over Z,.
Proof. Assume C is an MDR code of type {1%1,2%2} over Z4 with generator
matrix given by (10). :

Counsider the code C’ generated by

2y, 241 24
(19) ( 0 2 2A3)‘
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Then E = ®(C') is a binary linear code with minimum weight equal to the
minimum weight of C. Moreover the dimension of E is k¥ = k1 + k2. Hence E
is a binary MDS code. O

Corollary 7.5. There are no non-trivial MEDR or MLDR codes over Z.

Proof. If a code is maximum distance separable with respect to rank with any
weight then it is MDR with respect to the Hamming weight, therefore it is
trivial by the previous theorem. u

7.1. Optimal Linear Codes

The definition of equivalence was given in Section 1. Note that if a column
is multiplied by an element other than #1 in Z,, (such as 2 in Z4), it can
change the Lee and Euclidean weight distribution of the code, thus resulting
in inequivalent codes.

We denote by As(n, k) the maximum minimum weight for a binary code of
length n and dimension k. We denote by A4(n, k1, k2) the maximum minimum
weight for a linear Z, code of type {151, 2%2}.

Theorem 6.2 gives that Ay (n, k1, k) < min{Aa(n, k1), Ao(n — ki1, k2)}.

Tables 1, 3, 5 and 7 were obtained by using the theoretical bounds established
above. Tables 2, 4, 6 and 8 were obtained through an exhaustive search of all
inequivalent codes. The search considered all possible generator matrices of
the form (16), noting that in this case both A; and A3 can be considered as
binary matrices. Equivalent codes were eliminated by performing all possibly
equivalence transformations on a selected matrix and removing the resulting
matrices.

For k1 = 0, the optimal codes are given by 2Cs, where Cs is an optimal
binary code with the required length and dimension. Thus dg = 2d;, = 4dg,
and so only codes with k; > 0 will be considered further. In addition, dg =
szdH=1whenk1=n.

For k1 = 1,k; = 0, the optimal codes can easily be characterized. For the
Hamming weight, the highest weight is achieved by a binary repetition code.
For the Lee weight, suppose all coordinates are nonzero, and let j be the number
of coordinates with value 2 in the generator matrix. The number of ones is then
n — j. The weight of this codeword is 2j + n — j = n + j. The negation of
this codeword has the same weight. The other nonzero codeword has weight
2(n — j). Equating these two weights gives j = n/3, and this equality has
integer j when n is a multiple of 3. For n = 3, j = 1, and we have the generator
matrix

(112).

This code has d;, = 4, and an optimal code of length n = 3m has d;, = 4m.
It is easily shown that dy = d4m +1forn = 3m+ 1 and d, = 4m + 2 for
n = 3m + 2. Now consider the Euclidean weight. The weight of the codeword
with j 2’s is now 45 4+ n — j = n + 3j. The negation of this codeword has the
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same weight. The other nonzero codeword has weight 4(n — j). Equating these
two weights gives § = 3n/7, and this equality has integer j when n is a multiple
of 7. For n =7,j = 3, and we have the generator matrix

(1111222).

This code has dg = 16, and an optimal code of length n = 7m has dp = 16m.
It is easily shown that dg = 16m 4+ 1 for n = Tm + 1, dg = 16m + 4 for
n=Tm+2,dg =16m 36 forn=Tm+3, dg = 16m + 8 for n = Tm + 4,
dg =16m+ 11 for n = Tm + 5, and dg = 16m + 12 for n = Tm + 6.

TABLE 1. Bounds on Optimal Codes over Z,4 of Lengths 1-4

Y

i S T SR R R L e N N R R SRS e

ORNWRORNWORNORORNWOR MO RO =G o —F
BONRNOWN O RO O|w R OoNR O oo~ o~ ofF
(SRS RSN O NN SN NN CECE NN WY [ER RTINS IO
pp.&b»mmmmmgmzaAppamwmgs.ap.bmmp.bg"

1N NN N . N N NI NN SN SV SV R AUV VU A U I SIS NIV O e

For other code parameters, we provide some examples below. A complete list
of all optimal codes can be obtained from the second author. The classification
of optimal rate 1/2 codes can be found in [17]. Here Z4 codes are denoted by
[n, kl, k)z]

There is a unique optimal Lee weight [7, 3, 0] code with dr = 6 given by

1001 11 2
Gra=10101 2 31
00113 2 3

This code has Lee weight enumerator
Wi(Cr1) = 1442254 72% + 14210,

This code is self-orthogonal, but does not have a linear binary image.
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TABLE 2. Optimal Code Distances for Lengths 1-4 over Z4

dr dg

dg

k1

— =

— N

- o

<t 00

o<

[a\ N}

o

< 00— N ™M

N =N

AN~ A

— O H N

O MmA A

MMM MM

N

™

— O N

< < ¥

WO MNMFW—~ NN H

NN AN

NN NN~ At

HNOANMO =N <

—HOMAN O NN~ O

B IR S S S A R

TABLE 3. Bounds on Optimal Codes over Z4 of Length 5

dr, dg

dy

k1

20
20
12

10
10

e}

lia)

<t ™

N NN

O™

NN —~O

WD D0

00 00 00 Q0 a0

< <

AN

O Nm

HON—~O

W0 10 0 D

< <

AN NN N

—

O~ N

o N~ O

[iITolR o R Taly Inj ol

4 given by

There is a unique optimal Lee weight [7,3, 3] code with dr

00 00 20 2
o0 n 00 2 2
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TABLE 4. Optimal Code Distances for Length 5 over Z,

TABLE 5. Bounds on Optimal Codes over Z4 of Length 6

24
24

<

12
12

NN NN AN
-
O = NM P O

O ON—O

NeJie S oo JilNe je o]

4 given by

).

and a unique optimal Lee weight [7,4,1] code with dy,

100 001 2
0t 000 21

001010 2

000111

Gr3

1

|

00 00 2 20
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TABLE 6. Optimal Code Distances for Length 6 over Zy

|

[N IR ST ST S SRS TSR SR SR SN VUSR] FEt e P

de
12
24
8
11
16

coooooooo oo oo oo oo oo o oo o3
cRmpwh oo vwe o~ nwelornwo o=
SO L Ot a W~ Ol W ofw - o~ o= o F
NECECT T CRT PP CR ORI NN Fo W FoR NN e fo

Bk W o oo o e e o | o 0o @ e ol [ 00 00 O

Both codes have Lee weight enumerator
WL(Cra) = 1477z*+ 1682 + 2032% + 5620 + 722,

but only C7 2 has a linear binary image (the unique optimal binary [14,9,4]
code).

There is a unique optimal Euclidean weight [6,2,1] code with dg = 8 given
by

101112
Gei=|0 11231
002020

This code has Euclidean weight enumerator
WE(ij,l) = 1+ 27338 + 3%16 + 3324.
There are two optimal Euclidean weight [7,3,0] codes with dg = 8 given by

1000 1 2 2
Gra=[010120 2],
0012012

and

P

w

Il
oo
O -
-
— =
w N
[SRRUL]
w =
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TABLE 7. Bounds on Optimal Codes over Z, of Length 7

n ki ko dyg dr dg
7 1 0 7 14 28
7 0 1 7 14 28
7 2 0 4 8 16
7 1 1 6 12 24
7 0 2 4 8 16
7 3 0 4 8 16
72 1 4 8 16
7 1 2 4 8 16
7 0 3 4 8 16
7 4 0 3 6 12
7 3 1 4 8 16
7 2 2 3 6 12
7 1 3 3 6 12
7 0 4 3 6 12
7 5 0 2 4 8
7 4 1 3 6 12
7 3 2 2 4 8
7 2 3 2 4 8
7 1 4 2 4 8
7 0 5 2 4 8
7 6 0 2 4 8
7 5 1 2 4 8
7 4 2 2 4 8
7 3 3 2 4 8
7 2 4 2 4 8
7 1 5 2 4 8
70 6 2 4 8
77 0 1 2 4
7 6 1 1 2 4
7 5 2 1 2 4
7 4 3 1 2 4
7 3 4 1 2 4
T2 5 1 2 4
7 1 6 1 2 4
7 0 7 1 2 4

These codes have Euclidean weight enumerators

We(Cra) = 14272542020 + 32 + 122" + 2™,
WE(C7,5) = 1+422%+ 2126,

The first code has a linear binary image (a [14,6,4] code), while the second code
is self-orthogonal.

There is a unique optimal Euclidean weight {7, 4, 3] code with dg = 3 given
by

Grg =

s

DO OO OO =
OO O OO O
OO OO = OO
SO O, O OO
OO N O
O N O ===
OO O =
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TABLE 8. Optimal Code Distances for Length 7 over Z,

2

o e | B0 R RO B B D RO R0 B0 o b0 R0 b0 o co o 0o ol i e | A | = Iy

dE
16
28
11
12
16
8
8
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=
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wwwwwww»—t.u%%.pwmw»p.&»»mmm»»»mma@wm@‘;m&

PP RN O S P S CE O O W gl Sl R RN I

This code has Euclidean weight enumerator

Wg(Cre) = 1+ 562%+ 1192 + 35227 + 3572° + 336z + 371z
+2242'% + 14720 + 5620 4 21220 4 72%* 4 2%,
and has a linear binary image (a [14,11,2] code).

8. Codes over Zg and Zg

Using the results we have attained so far we shall give the best linear codes
(in terms of the Hamming distance) of a given length and given rank for codes
over Zg and Zg.

Any linear code over Zg is permutation equivalent to a code with generator
matrix of the form

I, A A A
(20) 0 2@, 244 245 |,
0 0 4L, 44
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and any linear code over Zg is permutation equivalent to a code with generator
matrix of the form

I, A A
(21) ( 0 3, 3A4s ) ’
where I}, is the k by k identity matrix.

Codes over Zg have type {1%1, 22 4%3} and rank k1+k2+ks. An [n, k1, k2, k3]
Zg code contains 851452253 elements and has rate (k1 + %2 + %) /n.

An [n, k1, ks) code over Zg has type {1¥,3%2}. Tt has rank k; + k2 and
contains 9%13%2 elements. The rate of this code is (k1 + £)/n.

Bounds on the Hamming weight of optimal codes over Zg and Zg up to
length 6 for a given rank are given in Table 9. One may notice that these
distances are equal to the bounds on binary and ternary codes. This is not
surprising, as a construction which meets these bounds is 4G» for Zg and 3G3

for Zg, where G5 and G3 are generator matrices for optimal binary and ternary
codes, respectively.

TABLE 9. Bounds on Optimal Codes

n rank dg —2Zg dyg —Zg
1 T T 1
2 1 2 2
2 2 1 1
3 1 3 3
3 2 2 2
3 3 1 1
1 1 1 1
4 2 2 3
4 3 2 2
4 4 1 1
5 T 5 5
5 2 3 3
5 3 2 2
5 4 2 2
5 5 1 1
6 1 6 6
6 2 4 4
6 3 3 3
6 4 2 2
6 5 2 2
6 6 1 1
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