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LEONHARD EULER (1707-1783) AND THE
COMPUTATIONAL ASPECTS OF SOME ZETA-FUNCTION
SERIES

HARI MOHAN SRIVASTAVA

ABSTRACT. In this presentation dedicated to the tricentennial birth an-
niversary of the great eighteenth-century Swiss mathematician, Leonhard
Euler (1707-1783), we begin by remarking about the so-called Basler prob-
lem of evaluating the Zeta function ¢ (s) [in the much later notation of
Georg Friedrich Bernhard Riemann (1826-1866)] when s = 2, which was
then of vital importance to Euler and to many other contemporary math-
ematicians including especially the Bernoulli brothers [Jakob Bernoulli
(1654-1705) and Johann Bernoulli (1667-1748)], and for which a fascinat-
ingly large number of seemingly independent solutions have appeared in
the mathematical literature ever since Euler first solved this problem in
the year 1736. We then investigate various recent developments on the
evaluations and representations of ¢ (s) when s € N\ {1}, N being the
set of natural numbers. We emphasize upon several interesting classes
of rapidly convergent series representations for ¢ (2n + 1) (n € N) which
have been developed in recent years. In two of many computationally
useful special cases considered here, it is observed that ¢ (3) can be rep-
resented by means of series which converge much more rapidly than that
in Euler’s celebrated formula as well as the series used recently by Roger
Apéry (1916-1994) in his proof of the irrationality of ¢ (3). Symbolic and
numerical computations using Mathematica (Version 4.0) for Linux show,
among other things, that only 50 terms of one of these series are capable
of producing an accuracy of seven decimal places.

1. Introduction and motivation

Some of the important functions in Analytic Number Theory include (for
example) the Riemann Zeta function { (s) and the Hurwitz (or generalized)
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Zeta function ¢ (s, a), which are defined (for R (s) > 1) by

> 1 1 x 1

ngl ns = 1— 9-5 ngl (2n — 1)5 (R(s) >1)
Ay C(s)=

1 _121_5 nz::1 (_135 (R(s)>0; s#1)
and
(1.2)

— 1
=5 : = 7= = {0,-1,-2, ..}),
¢ (s,a) T;)("Jra)s (R(s) >1; ae C\Zg; Zg == {0, -1, H
and (for R (s) < 1; s # 1) by their meromorphic continuations (see, for details,
Titchmarsh [39]; see also Whittaker and Watson [42]), so that (obviously)

1

(13) c(s,1>=<(s>=<28—1>‘1<(s,5) and  ((5,2)=C(s)~ 1.

More generally, we have the following relationships:

(1.4 ()= > ¢ (s L)
(meN\ {1}; N:={1,2,3,...})

and

1 m~—1 ]
(1.5) ¢(s,ma) = — ¢ (s,a + —) (m € N).
me = m

A fascinatingly large number of seemingly independent solutions of the so-
called Basler problem of evaluating the Riemann Zeta function ¢ (s) when s = 2,
which was of vital importance to Leonhard Euler (1707-1783) and the Bernoulli
brothers [Jakob Bernoulli (1654-1705) and Johann Bernoulli (1667-1748)], have
appeared in the mathematical literature ever since Euler first solved this prob-
lem in the year 1736. Another remarkable classical result involving Riemann’s
(-function is the following elegant series representation for ¢ (3):

oA & ¢ (2k)
(16) ¢ =-= I; (2k + 1) (2k + 2) 22k

which was actually contained in Euler’s 1772 paper entitled “Exercitationes
Analyticae” (cf., e.g., Ayoub [3, pp. 1084-1085]). In fact, this result of Euler
was rediscovered (among others) by Ramaswami [27] (see also Srivastava [28,
p. 7, Equation (2.23)]) and (more recently) by Ewell [13]. And, as pointed
out by (for example) Chen and Srivastava [5, pp. 180-181], another series
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representation:

(1.7) ¢(3) = Z k3

k=1

l\’)IO‘l

which played a key role in the celebrated proof [2] of the irrationality of ¢ (3)
by Roger Apéry (1916-1994), was derived independently by (among others)
Hjortnaes [19], Gosper [17], and Apéry [2].

Clearly, Euler’s series in (1.6) converges faster than the defining series for
¢ (3), but obviously not as fast as the series in (1.7). Such Zeta values as { (3),
¢ (5), et cetera are known to arise naturally in a wide variety of applications such
as those in Elastostatics, Quantum Field Theory, et cetera (see, for example,
Tricomi [40], Witten [44], and Nash and O’Connor [25], [26]). On the other
hand, in the case of even integer arguments, we already have the following
computationally useful relationship:

with the well-tabulated Bernoulli numbers defined by the generating function:

n

ad z
=> B, = (zl<2m),
n=0

as well as the familiar recursion formula:

(1.9)

(L10)  ¢(2n) = <n+ %>_ T C@K) Can—2k)  (neN\ {1}).
k=1

Motivated essentially by a genuine need, for computational purposes, for
expressing ¢ (2n + 1) as a rapidly converging series for all n € N, we propose to
present here a rather systematic investigation of the various interesting families
of rapidly convergent series representations for the Riemann ¢ (2n + 1) (n € N).
We also consider relevant connections of the results presented here with many
other known series representations for ¢ (2n+1) (n € N). In two of many
computationally useful special cases considered here, it is observed that ¢ (3)
can be represented by means of series which converge much more rapidly than
that in Euler’s celebrated formula (1.6) as well as the series (1.7) used recently
by Apéry [2] in his proof of the irrationality of ¢ (3). Symbolic and numerical
computations using Mathematica (Version 4.0) for Linux show, among other
things, that only 50 terms of one of these series are capable of producing an
accuracy of seven decimal places.
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2. A class of series representations for ¢ (2n + 1) (n € N)

We begin by recalling the following simple consequence of the binomial the-
orem and the definition (1.1):

(2.1) S O skt =clsa-t) (<lal),

k=0
which, for @ = 1 and ¢ = +1/m, readily yields the series identity:
o~ (8)ai C(s+2k)
(2k)!  m?k

(2°=1) ¢(s) — 277 (m=2)

(]

k=0

(2.2) = 2 ,
; <m8—1><(s>—ms—j;2<(s,%)} (meN\ {1,2}),

(A),, :=T'(A + n) /T ()) being the Pochhammer symbol (or the shifted factorial,
since (1), = n! for n € Np). (See, for details, [29] and [34]).
In terms of the familiar harmonic numbers

n

(2.3) H, := Zl (neN),

Jj=1

the following set of series representations for ¢ (2n + 1) (n € N) were proven
recently by Srivastava [32] by appealing appropriately to the series identity
(2.2) in its special cases when m = 2,3,4, and 6, and also to many other
properties and characteristics of the Riemann Zeta function such as the familiar
functional equation:

(2.4) C(s)=2-(2m)° 'sin (%7’[‘8) F'1—-s)¢(1-s9)

or, equivalently,
(2.5) ¢(1—5s)=2-(2m) ° cos (%ws) T'(s)¢(s),
the familiar derivative formula:
eo ¢ =i

= 2—((_—217%;(271)' ¢((2n+1) (neN)

((—2n+5)}

3

with, of course,

@1 (O=-3 (=0 @meN); ¢©0)=-;log(n),
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and each of the following limit relationships:

) sin (37s) | "
(28) Jm {W} = (1)

and
[ C(s+2k) (="
. = — 2k C{(2n—2k+ 1
(2.9) Sl“i%n{ ST on 7 (T (2n —2k)! € (2n — 2k +1)
(k=1,...,n—1;, ne N\ {1}).
Series Representation 1:
¢(2n+1)

o[

(neN)

1

a1 @m)P [Hap—logm =2 (=DF  ¢(2%k+1)
(2.10) =D 122”“—1[ 2(2n)1 2(2n—2k)! 2k

= (2k-1) C(2k
+Zz+2k) .‘g%)] (neR);

Series Representation 2:
¢(2n+1)

B not 2-(2m) [Han —log (37) X (-1)F  ¢(2k+1)
(2.11) = ()" | { (2n)! +Z (2n — 2k)! (%ﬂ%

k=1
o0

(2k —1)! 2k
+2 Z (2n + 2k)! C;zk):l (TZEN);

Series Representatlon 3:
(2.12)
¢(2n+1)

_ (cqymt 2™ Han —log (57)
9ant1 4 g2n | (2n)!

n—1 k 00
(1" ¢Q@k+1) (2k —1)! ¢ (2k) .
+Zl(2n—2k)! (%W)% +2§::1(2n+2k:)! 42k } (n €N);
Series Representation 4:
(2.13)
¢(2n+1)

= (=1)"! 2-(2m)™ Hon —log (3)
= (-1 320 (220 4 1) 4220 — 1 (2n)!

loC)F (k4 1) = (2k— 1)1 ¢ (2k)
;(271—%)! (%W)Zk +2§(2n+2k)! 62’“] (n e N).
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Here (and elsewhere in this presentation) an empty sum is to be interpreted
(as usual) to be zero.

The series representation (2.10) is markedly different from each of the series
representations for ¢ (2n + 1), which were given earlier by Zhang and Williams
[45, p. 1590, Equation (3.13)] and (subsequently) by Cvijovi¢ and Klinowski
[10, p. 1265, Theorem A]. Since ¢ (2k) — 1 as k — 00, the general term in the
series representation (2.10) has the following order estimate:

O(27%* .k 1) (k—oc0; neN),

whereas the general term in each of these earlier series representations has the
order estimate given below:

O(2%* k) (k—oo; neN).

By suitably combining (2.10) and (2.12), it is fairly straightforward to obtain
the series representation:

— n—1 2: (27r)2n log 2
C(2n+1)=(-1) (22n —1) (2t 1) [(Zn)!
) (2% - 1) ¢(2k+1)
Z 2n — 2k)! w2k
2 (2k — 1)1 (2%F — 2k
(2.14) _221 o +(2k 1) 62(4k )} (neN).

Now, in terms of the Bernoulli numbers B,, and the Euler polynomials E,, (x)
defined by the generating functions (1.9) and

2% o 2"
2.1 = —
( 5) 62+]. ;E’n (:E) n| ('Z’<7T),

respectively, it is known that (cf, e.g., Magnus et al. [24, p. 29])

2 (1 - 2n+1)

(2.16) En(0) = (1" En(l) = ———

Bn+1 ('I"L € N) s

which, together with the identity (1.8), implies that

4-(-1"

(2.17) Espn1(0) = (271')2n

(2n - 1)1 (2°" - 1) ((2n) (n€N).
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By appealing to the relationship (2.17), the series representation (2.14) can
immediately be put in the alternative form:

_ I 2. (2m)*" log 2
=1 (2”’—1)(2””4<—1)[(2nﬂ
L(-DF (2% - 1) ¢(2k+1)
+ kz:; (2n — 2k)! w2k
IS (DR a2
(2.18) +§ g (;nﬁ)— ('2‘) Eo 1 (0):| (neN),

which is a slightly modified (and corrected) version of a result proven, using a

significantly different technique, by Tsumura [41, p. 383, Theorem B].
Another interesting combination of our series representations (2.10) and

(2.12) leads us to the following variant of Tsumura’s result (2.14) or (2.18):

Cnt1)= (-t : l:HZn—log(ngr)

22n+1 (2n)!
n—l
)F (2241 1) ¢ (2k+1)
+ ; (2n — 2k)! 72k |
L (2k — 1)1 (221 — 1) ¢ (2k)
(2.19) —4; G T o (neN),

which is essentially the same as the determinantal expression for ¢ (2n+ 1)
derived recently by Ewell {14, p. 1010, Corollary 3] by employing an entirely
different technique from ours.

Many other similar combinations of the series representations (2.10) to (2.13)
would yield some interesting companions of Ewell’s result (2.19).

Next, by setting ¢ = 1/m and differentiating both sides with respect to s,
we find from the following obvious consequence of the series identity (2.1):

Z (2k3'f+f>. (s + 2k +1,a) t7

(220) :%K@ﬂ—ﬂ—C@ﬂ+ﬂ] (141 < la)
that

-~ 2k
Z# ¢'(s+2k+1,a0) +((s+2k+1, a>Z

=0

(2.21) = % %{g (s,a—%) —(<s,a+%>} (meN\ {1}).

s+7
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In particular, when m = 2, (2.21) immediately yields

o0 2k
1
2k+1 /
1 2% + 1 —
; 2k+1'22k ¢ (s+2k+1,a)+((s+2k+ ’a)]z:;erj

(2.22) = — (a - %)_ log (a - %) .

By letting s — —2n -1 {n € N) in the further special of this last identity (2.22)
when a = 1, Wilton [34, p. 92] obtained the following series representation for
¢ (2n + 1) (see also Hansen [18, p. 357, Entry (54.6.9))):

. n—1 k
C@2n+1) =(=1)""" x> [H2n+1 —logm + Z : (-1) C(2k+1)
k

(2n +1)! — 2n — 2k + 1)! 2k
= (2k—1)! 2k
(2.23) +2Z(2n+2k—f)-1 Cé%)} (neN),

which, in view of the identity:

k) (2k—1)! (2% — 1)!
(2:24) Gt 2B Gnt koD D nsoy €N

would combine with the result (2.10) to yield the series representation:

C(2n+1)=(-1)"

(2m)?" = (=DE C2k+ 1)
515

n(22n+1 — —~ (2n -2k}l w%
(k) ((2k)
(2.25) +;) @ T aR) 2 } (n € N).

The series representation (2.25) is precisely the aforementioned main result
of Cvijovi¢ and Klinowski [10, p. 1265, Theorem A]. In fact, by virtue of a
known derivative formula [32, p. 389, Equation (2.8)], the series representation
(2.25) is essentially the same as a result given earlier by Zhang and Williams
[45, p. 1590, Equation (3.13)] (see also Zhang and Williams [45, p. 1591,
Equation (3.16)] where an obviously more complicated (asymptotic) version of
(2.25) was proven similarly).

Observing also that

(2k)! (k1)
(2n+2k+1)! ~ (2n + 2k)!

(2k — 1)!
(2n + 2k 4+ 1)!

(2.26) —(2n+1) (n,k € N),
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we obtain yet another series representation for ¢ (2n + 1) by applying (2.10)
and (2.23):

2. (2m)*"

= DR kD)
Z (2n —2k+ 1)1 w2k

¢ (2k)
+Z 2n—|—2k+1 2%} (n €N),

which provides a significantly simpler (and much more rapidly convergent) ver-
sion of the other main result of Cvijovi¢ and Klinowski [10, p. 1265, Theorem
BJ:

(2.27)

(228)  C@n+1)=(-1)" %ﬁ S0 S (e,
" k=0

where the coefficients €, , are given explicitly as a finite sum of Bernoulli
numbers [10, p. 1265, Theorem B(i)] (see, for details, Srivastava [32, pp. 393-
394]):

2n
2n an_'
229)  Qui=3 ()= i ‘ eN; keNy).
22 j:o(a>(a+2k+1)(a+1)2ﬂ (n 2

3. Further classes of series representations

By starting once again from the identity (2.1) with (of course) a = 1, t =
+1/m, and s replaced by s + 1, and applying (2.2), we find yet another class
of series identities including, for example,

(31) >t S oy o
k=1

and

i (s4+ 1)y, C(s+2k)

el COL m2k
:%[m(m -3)¢(s) + (m® —1)§(s+1)—2§<5+1’_§;)

(3.2) m:{ ( '>+<<s+1,%>} (meN\ {1,2}).

=

It is the series identity (3.1) which was first applied by Zhang and Williams
[45] (and, subsequently, by Cvijovié¢ and Klinowski [10]) in order to prove two
(only seemingly different) versions of the series representation (2.25). Indeed,
by appealing to (3.2) with m = 4, we can derive the following much more
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rapidly convergent series representation for ¢ (2n + 1) (see Srivastava [31, p. 9,
Equation (41))):

¢(2n+1)
— n 2- (271')2" g1 _1
_(—1) n(24n+1+22n_ 1) l: (2n) B, log 2
3.3 22—l 1 g1 1
(3.3) —é(—2—:—)—,6(1—2n)—(—n—_1—ﬂ4<1—2n,1>
D k<2k+1 © (k) ¢(2k)
-+ k;_l (Z’n — 2]{:)’ l Z (2'I’L + 2]9)‘ 42k } ('I’L € N),

where (and in what follows) a prime denotes the derivative of ¢ (s) or {(s,a)
with respect to s.

In view of the identities (2.24) and (2.26), the results (2.12) and (3.3)
would lead us eventually to the following additional series representations for
¢(2n+ 1) (n € N) (see Srivastava [31, p. 10, Equations (42) and (43)]):

(3.4)
¢(2n+1)
_ n—1 [T\ H2n+1 _log (lﬂ') 2(4” - 1)
= (=) (5) [ @2n + 1) o n 1 o) Dz log?
92n+1 _ 1 , 94n+3 , 1
- (2n—|—1)' S A e T (‘2”“1’1)

((2k+1) | o= (k=1 ((2k) '
+Z 2n—2k+1 (%W)Zk +2;(2n+2k+1)! 4219} (neN);

(3.5)
C(@2n+1)

4. (2m)*" [22n+

= OV rEm o ey ¢ Y

42n+1 , 1 (2n + 1) (an — 1)
+ (21’],)' C (~2 - 17 Z) - (2"1 + 2)' BZn+2 10g2
n-1 k-1
(D" k  ¢(2k + 1) ¢ (2k)
+Z(2n—2k+1) l Z(2n+2k+1 22k (n e N).

Explicit expressions for the derivatives ¢’ (=2n £+ 1) and ¢’ (—2n + 1, 1), occur-
ring in the series representations (3.3), (3.4), and (3.5), can be found and sub-
stituted into these results in order to represent ¢ (2n + 1) in terms of Bernoulli
numbers and polynomials and various rapidly convergent series of {-functions
(see, for details, Srivastava [31, Section 3]).
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Of the four seemingly analogous results (2.12), (3.3), (3.4), and (3.5), the
infinite series in (3.4) would obviously converge most rapidly, with its general
term having the order estimate:

O (k2 472K (k — oo; m € N).

Srivastava and Tsumura [36] derived the following three new members of
the class of the series representations (2.12) and (3.4):

(3.6)
¢(2n+1)
B not (20N | Honay = log (31) (3272 - 1)«
= (=1) (_3—> [ (2n+1)! ) 2v/3 (2n + 2)! Doz

(_1)77,—1 . l
* V3 (2m)2 Tt C<2 2 3) ,
! —~1)* 2k+1 > (2k—1)! (2
+kz::1(2n( ) ¢( Z (2k) (neN),

—2k+ 1 (2q) P 2n+2k+1)| 3%k
(3.7)
¢(2n+1)
= n—1 (T\2" | Hany1 — log (l ) 92n (22n+2 _ 1)7r
- (5) { (2n+1)! =+ (2n + 2)! Ban+2
(_1)n—1
* 5y € (n2)
n—1 k ~
=1 ¢( 2k+1 (2k—1)! ¢ (2k)
i Z (2n + 2k + 1)! 42kj| (neN),

— (2n — 2k 4 1}! (1

and
(3.8)
¢(2n+1)

¢ qyn=1 (™2 | Hong — log (3m) 22 (32 —1)n
= (=1 (3> [ (2n+ 1)! + V3(2n +2)! Bopta

) o)
b Ck+1) < (k-1) ¢ (2k)
+Z 2n—2k—|—1 (l 22n+2k+1 62’“} (neN).

Indeed the general terms of the infinite series occurring in these three members
[(3.6), (3.7), and (3.8)] have the order estimates:

(3.9) O (k™2 2.m~ %) (k- oo; n€N; m=3,4,6),

wl»—-‘
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which exhibit the fact that each of the three series representations (3.6), (3.7),
and (3.8) converges more rapidly than Wilton’s result (2.23) and two of them
[¢f. Equations (3.7) and (3.8)] at least as rapidly as Srivastava's result (3.4).

Next we recall that, in their aforecited work on the Ray-Singer torsion and
topological field theories, Nash and O’Connor ([25] and [26]) obtained a num-
ber of remarkable integral expressions for ¢ (3), including (for example) the
following result [26, p. 1489 et seq.]:

2 /2
(3.10) c(3) = 2 log2 - §/ 22 cot z dz.
7 7/,
Since [12, p. 51, Equation 1.20(3)]

(3.11) zcotz=—2i((2k)<§)2k (2] < ),
k=0

the result (3.10) is, in fact, equivalent to the series representation (cf. Dabrow-
ski [11, p. 202]; see also Chen and Srivastava [5, p. 191, Equation (3.19)]):

(3.12) ¢(3) = <log2+z P D) 2%)

Moreover, upon integrating by parts, it is easily seen that

/2 /2
(3.13) / Z2cotz dz = -2/ zlogsinz dz,
0 0
so that the result (3.10) is equivalent also to the integral representation:
2 /2
(3.14) C(3) = ™ T log2 + 179/ zlogsin z dz,
0

which was proven in the aforementioned 1772 paper by Euler (¢f., e.g., Ayoub
[3, p. 1084)).
Furthermore, since

(3.15) icotiz = cothz = —
e

2_1+1 (i :=v-1),

by replacing z in the known expansion (3.11) by Jinz, it is easily seen that (cf,
e.g., Koblitz [14, p. 25]; see also Erdélyi et al. [12, p. 51, Equation 1.20(1)])

00 k+1
rr o mr SNk L,
= 2).
emz ~ 1 + 2 ; 22k—1 z (IZ| < )

(3.16)

By setting z = it in (3.16), multiplying both sides by t™~! (m € N), and then
integrating the resulting equation from t = 0 to t = 7 (0 < 7 < 2), Srivas-
tava [24] derived the following series representations for ¢ (2n + 1) (see also
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Srivastava et al. [35]):

(27()2"

¢@rt 1) =(-1"" (2n)! @ 1)

log2 + Z (—1y (2n> %2(27]2;& CZi+1)

(3.17) +Z (kin 22’“} ety

and

- o (27‘(’)2"
¢C@2n+1)=(-1) 2n+ 1122 — 1)
1og2+Z< b’ (2n2j1>@(¥>ii) P
o ¢ (2k
.18 ‘I—;) k+n+) 22k:| (n €N).

In its special case when n = 1, (3.18) immediately reduces to the following
series representation for ¢ (3):

(3.19) ¢(3)= < 2+2Z 2k+3 22k>

which was proven independently by (among others) Glasser [16, p. 446, Equa-
tion (12)], Zhang and Williams [45, p. 1585, Equation (2.13)}, and Dabrowski
[11, p. 206] (see also Chen and Srivastava [5, p. 183, Equation (2.15)]). And
a special case of (3.17) when n = 1 yields (¢f Dabrowski [11, p. 202]; see also
Chen and Srivastava [5, p. 191, Equation (3.19)])

(3.20) ((3)= ( 2+Z FiD 2%)

In view of the familiar sum:

oo

¢ (2k 1
(3.21) 3 (2_]“%2_)6 =~ log2,
k=0

Euler’s formula (1.6) is indeed a simple consequence of (3.20).

We remark in passing that an integral representation for ¢ (2n + 1), which
is easily seen to be equivalent to the series representation (3.17), was given
by Dabrowski [11, p. 203, Equation (16)], who [11, p. 206] mentioned the
existence of (but did not fully state) the series representation (3.18) as well.
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The series representation (3.17) is derived also in a recent paper by Borwein et
al. (¢f. [4, p. 269, Equation (57)]).

By suitably combining the series occurring in (3.12), (3.19), and (3.21), it
is not difficult to derive several other series representations for ¢ (3), which are
analogous to Euler’s formula (1.6). More generally, since

A2 4k + v
(2k+2n—1)(2k+2n) (2k+2n + 1)
A B c

322 = 9’
(3.22) Skton—1 2%kton Zktontl

where, for convenience,

(323) A=A ()= %[An YO PP P ()\+2,u+4u)]
(3.24) B=B,(\pv):=-(n*-pn+v),

and

(3.25) C=Ch(Au,v):= [)\n +(A—p)n+- ()\ 2u+ 41/)]

by applying (3.17), (3.18), and another result (proven by Srivastava [33, p. 341,
Equation (3.17)]):

- m+1\ (2 (2¥ -1)
J=1 ( 2j ) (2m)% (@E+1)
(3.26) = log2+ Z v +i(ik) o (heNo),

with n replaced by n — 1, Srivastava [33] derived the following unification of a
large number of known (or new) series representations for ¢ (2n + 1) (n € N),
including (for example) Euler’s formula (1.6):
(3.23)

((2n+1)

(=)' em)™
() {22+ — 1) B+ (2n + 1) (220 — 1) C}

l:—)\log2+z (2’; ){2 (2j — 1) A+ [A(dn — 1) — 24 nj

+An (n+ 1)} (21 -2 (2% 1) C(2j+1)

2 (2m)™
> (ME? + pk +v) ((2k)
+ZO Gtk i) @ rmrnar| MEN Aurel),
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where A, B, and C are given by (3.23), (3.24), and (3.25), respectively.
Numerous other interesting series representations for ¢ (2n + 1), which are
analogous to (3.17) and (3.18), were also given by Srivastava et al. [35].

4. Some useful deductions and consequences

By suitably specializing the parameter A, u, and v in (3.27), and then ap-
plying a rather elaborate scheme, the following rapidly convergent series rep-
resentation for ¢ (2n + 1) (n € N) was derived by Srivastava [33, pp. 348-349,
Equation (3.50)]):

(4.1)
¢(2n+1)

= () 2D |5 -1y

| ({(2” ~ 32 2n) { (2n2; 1) - (%2; 2) on (22? - ;-) }

o3 n\  (2n+3 on + 1\ (27)! (2% — 1) '

- (2% 1){(2j) ( 2 )+3<2j—1>})———_(27r)2j ¢(2j+1)
3 (Enk + 1) C(2K)

+12k§=:0 (2k+2n—1) (2k+2n) (2k+2n+1) (2k+2n+2) (2k+2n+3) 2%]

(neN),

where, for convenience,

A, = (2218 - 1) {% 2n+1) (20 — 4n+3) (2" —1) = 2*"" 4 1}

—{(2n-3)2>"*2 —an} {22t n(2n - 3) (2°" - 1) — 1},

(4.2)

(4.3) €, =2{(@2n—-5)2"""? —2n+1},
and
(4.4) 1, = (4n2 — 4n — 7) 222 — (2n + 1),

In its special case when n = 1, (4.1) yields the following (rather curious)
series representation:
67 —

(4.5)  ¢(3)= 55 (98k + 121) ¢ (2k)

kzo (2k + 1) (2k + 2) (2k + 3) (2k + 4) (2k + 5) 22+’

where the series obviously converges much more rapidly than that in each of
the celebrated results (1.6) and (1.7).
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An interesting companion of (4.5) in the form:
(4.6)
¢(3)
_ 120 WQi 8576k2 + 24286k + 17283 ¢ (2k)
T 1573 & (2k + 1) (2k + 2) (2k+3) (2k+4) (2k+5) (2k+6) (2k+T7) 22k -

was deduced by Srivastava and Tsumura [38], who indeed presented an induc-
tive construction of several general series representations for ¢ (2n + 1) (n € N)
(see also [37]).

5. Symbolic and numerical computations based upon Mathematica
(Version 4.0)

We continue our presentation by first summarizing the results of our sym-
bolic and numerical computations with the series in (4.5) using Mathematica
(Version 4.0) for Linux:

In[1] := (98k + 121) Zeta[2k] /
((2k + 1) (2k + 2) (2k + 3) (2k + 4) (2k + 5) 2 (2k))

_ (121 + 98k) Zeta [2k]
Outll] = S T 28) (2 + 2K) (3 + 2) (4 + 2k) (5 1 2K)

In[2] := Sum[%, {k,1, Infinity}] // Simplify

121 23 Zeta[3]
240 6Pi2

In[3] := N[%]

Out[2] =

Out[3] = 0.0372903

In[4) := Sum|N [%1] // Evaluate, {k, 1,50}
Out[4] = 0.0372903

In[5] := N Sum[%1 // Evaluate, {k,1, Infinity}]
Out[5] = 0.0372903

Since ¢ (0) = —1, Out[2] evidently validates the series representation (4.5)
symbolically. Furthermore, our numerical computations in Out(3], Out[4], and
Out[5], together, exhibit the fact that only 50 terms (k = 1 to k = 50) of the
series in (4.5) can produce an accuracy of seven decimal places.

Our symbolic and numerical computations with the series in (4.6) using
Mathematica (Version 4.0) for Linux lead us to the following table:



COMPUTATIONAL ASPECTS OF SOME ZETA-FUNCTION SERIES 1179

Number of Terms | Precision of Computation
4 6
10 11
20 18
50 38
98 69

As a matter of fact, since the general term of the series in (4.6) has the following
order estimate:

O (27%. k%) (k — o0),
for getting p exact digits, we must have
27% . g5 <1077
Solving this inequality symbolically, we find that
5 107/ log 4
log4ProductLog (_50g~> ,

where the function ProductLog (also known as Lambert’s function) is the so-
lution of the equation:

k =

ze® = a.
We now give below some relevant details about our symbolic and numerical
computations with the series in (4.6) using Mathematica (Version 4.0) for Linux.

In [1]:= expr = (8576k '2 + 24286k + 17283) Zeta[2k] /

((2k + 1) (2k + 2) (2k + 3) (2k +4) (2k + 5) (2k + 6) (2k + 7) 27 (2k))

Out [1] = (17283 + 24286k + 8576k?) Zeta [2K]
WU T R (T 2k) (2 4 2k) (3 + 2K) (4 + 2K) (5 + 2k) (6 + 2K) (7 + 2K)

In [2] := Sumlexpr, {k,0, infinity}] // Simplify

1573

Out 2} = - oopp

Zeta|3]

In [3] :=N [—1573/ (1201392) Zeta[3], 50]
—Sumlexpr, {k,0,50}]

Out [3] = 4.00751120011 - 10738

In (4] :=N[-1573/ (120Pi’2> Zetal3], 100}

—Sum [expr, {k, 0,50}]
Out [4] =4.0075112001 <skip> 3481 - 10738
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Thus the result does not change appreciably when we increase the precision
of computation of the symbolic result from 50 to 100. This is expected, because
of the following numerical computation of the last term for & = 50:

In [5] := Nlexpr /.k — 50,50]
Out [5] = 1.3608530374922376861443887454551514233575702860179 - 1037

6. Concluding remarks and observations

The foregoing developments (which we have attempted to present here in a
rather concise form) have essentially motivated a large number of further inves-
tigations, not only involving the Riemann Zeta function ¢(s) and the Hurwitz
(or generalized) Zeta function ((s,a) (and their such relatives as the multiple
Zeta functions and the multiple Gamma functions), but indeed also the sub-
stantially general Hurwitz-Lerch Zeta function ®(z,s,a) defined by (cf., e.g.,
[34, p. 121, et seq])

(6.1) ®(z,5,a) =) (ﬁf—a)

(aeC\Zy; s€C when |z| <1; R(s) > 1 when |z =1).
The Hurwitz-Lerch Zeta function ®(z,s,a) defined by (6.1) contains, as its

special cases, not only the Riemann and Hurwitz (or generalized) Zeta functions
[¢f. Equations (1.1) and (1.2)]:

(6.2) ¢(s) = ®(1,s,1) and ((s,a) = ®(1,s,a)

and the Lerch Zeta function:

00 .
62n7r1§

(6.3) 6:(8) =) =™ @ (7 5,1)

ns

n=1
€ €R; R(s) > 1),

but also such other important functions of Analytic Function Theory as the
Polylogarithmic function:

X _n
(6.4) Lis(2) = i— =2 &(z,3,1)

n=1

(s€C when |[z]<1; R(s)>1 when |z|=1)
and the Lipschitz-Lerch Zeta function (c¢f. [34, p. 122, Eq. 2.5 (11)]):
o0 2nmif

(6.5) #(€,a,8) := Z °

— (n+a)

(aeC\Zy; R(s) >0 when (€R\Z; R(s)>1 when £€2Z),
which was first studied by Rudolf Lipschitz (1832-1903) and Maty4s Lerch
(1860-1922) in connection with Dirichlet’s famous theorem on primes in arith-
metic progressions. For details, the interested reader should be referred, in

= (™ 5,a) =: L (£, 3,0a)
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connection with some of these developments, to the recent works including
(among others) [1], [6] to [9], [15], [20], [21], and [23].

Next, in terms of the familiar Riemann-Liouville fractional derivative oper-
ator DY defined by

(6.6)
1 /7 et
m/o (Z—t) f(t)dt (ER(,u)<O)
DEfE =]
LEDE @) mo1ER@ <m (mEN)),

it is easily observed that

'(A+1) A
6.7 _— m A) > -1
(6.7) PN = oy 2 (R > ),

which yields the following fractional derivative formula for the general Hurwitz-
Lerch Zeta function ® (z, s,a) given by (6.1):

v f U'(p) -
v 1 o v o,0 o
(6.8) DLV {2 @ (2%, 5,a)} = T 2 L oleo) (27, 5,0)

(R(u) >0, c €RT),

where ®77) (2, 5, a) denotes a general family of Lin-Srivastava Zeta functions
defined by

00 'u o
6.9 B2 (
(6.9) (z,8,a) § ). L
(1€ C; a,v e C\Zg; p,oc €RY; p<o when s,z €C;
p=oand s€C when |z| <1; p=0and R(s— p+v)>1when |z| =1),

where (), denotes the Pochhammer symbol or the shifted factorial, used al-
ready in (for example) (2.1) and (2.2), since

(1),, =n! when ne€Ny:=NU{0},
given (for x, A € C and in terms of the Gamma function) by
(6.10)

T (A + &) 1 (k=0; AeC\{0})
(A)K = F—()\)—* =
AA+1D-A+n-1) (k=neN; AeC).

Obviously, we have

(6.11) 27 (2,5,0) = B0 (2,5,0) = @ (2, 5,0)
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and

¥

(1,1 — o* 3
(6.12) ®,1" (2,8,0) = ¥, (2,5,a) Z ! (n+a)

where @7, (z,s, a) is a generalized Hurwitz-Lerch Zeta function introduced and
studied earlier (see, for details, the recent investigations by Garg et al. [15]
and Lin et al. [23] as well as many of the earlier references cited by them).

In particular, when
v=o=1,

the fractional-derivative formula (6.8) would reduce at one to the following
known form which exhibits the interesting fact that @}, (2, s,a) is essentially a
Riemann-Liouville fractional derivative of the classical Hurwitz-Lerch function
® (z,s,a) defined by (6.1):

(6.13) @} (2,5,0) = ﬁ DL {2*7 @ (2,5,a)} (R (k) > 0).

It would be nice and worthwhile to be able to extend the results presented
in this lecture to hold true for the Hurwitz-Lerch Zeta function @ (z,s,a)
and for some of its generalizations given by the Lin-Srivastava Zeta function

<I>(p ) (2, s, a) for special values of the parameters u, v, p, and o in the definition
(6.9).
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