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SOME OPEN PROBLEMS IN THE THEORY OF INFINITE
DIMENSIONAL ALGEBRAS

EriM ZELMANOV

ABSTRACT. We will discuss some very old and some new open problems
concerning infinite dimensional algebras. All these problems have been
inspired by combinatorial group theory.

I. The Burnside and Kurosh problems

In 1902 W. Burnside formulated his famous problems for torsion groups:

(1) let G be a finitely generated torsion group, that is, for an arbitrary
element g € G there exists n = n(g) = 1, such that ¢" = 1. Does it
imply that G is finite?

(2) Let a group G be finitely generated and torsion of bounded degree, that
is, there exists n > 1 such that for an arbitrary element g € G g™ = 1.
Does it imply that G is finite? '

W. Burnside [7] and L. Schur [43] proved (1) for linear groups. The positive
answer for (2) is known for n = 2,3 (W. Burnside, [6]), n = 4 (I. N. Sanov,
[42]) and n = 6 (M. Hall, [17)).

In 1964 E. S. Golod and I. R. Shafarevich ([12], [13]) constructed a family
of infinite finitely generated p—groups (for an arbitrary element g there exists
n = n(g) > 1 such that g»" = 1) for an arbitrary prime p. This was a
negative answer to the question (1). Other finitely generated torsion groups
were constructed by S. V. Alyoshin [1], R. I. Grigorchuk [14], N. Gupta —S. Sidki
[16], V. I. Sushchansky [48]. In 1968 P. S. Novikov and S. I. Adian constructed
infinite finitely generated groups of bounded odd degree n > 4381. In 1994
S. Ivanov [19] extended this to n = 2¥,k > 32, so now we can say that the
question (2) has negative solution for all sufficiently large n.

Remark though that all the counterexamples above are not finitely pre-
sented. The following important problem still remains open.

Problem 1. Do there exist infinite finitely presented torsion groups?
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A. Yu. Olshansky and M. V. Sapir [36] constructed a finitely presented
group, which in torsion-by-cyclic.

In 1940 A. G. Kurosh [24] (and independently J. Levitzky, see [2]) formulated
an analog of the Burnside problems for algebras:

(1) Let K be a field and let A be a finitely generated K-algebra, which
is algebraic, that is, for an arbitrary element a € A there exists a
polynomial f,(t) € K[t] such that f,(a) = 0. Does it imply that the
algebra A is finite dimensional?

(2) What about algebras, which are algebraic of bounded degree, that is,
the degrees of all polynomials f,(t), a € A, are uniformly bounded
from above?

Of particular interest is the case of nil algebras when all polynomials f,(t)
are powers of ¢.

The negative answer to the question (1) is provided by the same Golod-
Shararevich examples [12], [13], however, the answer to the question (2) is YES
(N. Jacobson [20], I. Kaplansky [21], J. Levitzky [26], A. L. Shirshov [46]). Just
as in group theory the following problem is still open.

Problem 2. Is it true that every finitely presented algebraic (nil) algebra is
finite dimensional?

Let A = A; + Ay + --- be a graded algebra, 4;4; C A4, dim4; < oo
for all 4,5 > 1. We say that the algebra A is quadratic (see [32], [39]) if it is
generated by A; and presented (in these generators) by relators which all look
as Zaijxizj =0, oy € K.

4.3

By a Veronese subalgebra A(™ of A we mean A" = A, + Ao, + Asp +
-+-. J. Bachelin [4] noticed that if a graded algebra A is presented by a finite
system of relators, all of degrees < d, then for an arbitrary n > d the Veronese
subalgebra A is quadratic. This reduces the Kurosh problem for finitely
presented graded algebras to the quadratic case. ‘

Problem 3. Is it true that a quadratic nil algebra is nilpotent?

I would expect this problem and, more generally, The Kurosh Problem for
finitely presented algebras to have positive solution. This opens a possibility
of an interesting dichotomy for groups. Recall that a group is residually finite
if the intersection of all its subgroups of finite index is trivial. The Burnside
Problem for groups of bounded degree has negative solution in the class of all
groups but positive solution in the class of residually finite groups ([51], [55],
[56]), because residually p—groups behave somewhat like algebras (see [57]). It
is conceivable that infinite finitely presented torsion groups exist in the class
of all groups, but, perhaps, not in the class of residually finite groups.
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I1I. The Golod-Shafarevich construction

Let’s recall the notion of a pro-p group. A group G is said to be residually-p
if the intersection of all subgroups of G of p—power index is trivial. Taking all
these subgroups for the basis of neighborhoods of 1 we define a topology on
G. If this topology is complete then G is called a pro-p group. Another way
to say it: a pro—p group is an inverse limit of finite p—groups. If the group G
is residually—p but the topology is not compete then we can embed G into the
completion G5, which is called the pro—p completion of G.

For an arbitrary (not necessarily residually—-p) group G we can pass to the
quotient G/N{H < G | |G : H| = p*, n > 1} and then to its pro—p completion,
which is denoted as G5 and called the pro—p completion of G.

The free group F;,(X) on the set of free generators X = {z1,...,Zm} is
residually—p for an arbitrary prime p. Its pro—p completion F' = F,,(X)3 is free
in the category of pro—p groups: an arbitrary mapping of X into an arbirtary
pro—p group G uniquely extends to a continuous homomorphism F — G.

Consider the field K = Z/pZ, the group algebra KF and its fundamental
ideal w = {Zalfz, o; € K, fi € F, >, o; = 0}. Then ﬂw = (0). The

descending chaln of invariant subgroups
F=F>F> -, F=Fn(l+uW),
is called the Zassenhaus filtration, 'DlFi =(1).
(>

Let 1# fe€ F, f € F;\ F;11. Then we say that deg(f) =

For a subset R C F let N(R) be the smallest closed normal subgroup of
F, which contains R. The group G = F/N(R) = (X | R = 1) is said to be
presented by the set of generators X and the set of relators R in the category
of pro—p groups. If G = (X | R = 1) is a presentation of a discrete group
then the same presentation in the category of pro—p groups defines the pro—p
completion Gp.

Suppose that the set R does not contain elements of degree 1, but contains r;

elements of degree 4, ¢ > 2. The formal power series Hg(t) = Z rit* is called

the Hilbert series of R. We will consider also the Hilbert serles Hgql(t) =

1+ 1—21 dim(w(—l({%c)ii)ﬁ)ti. Golod and Shafarevich [13] (see also Roquette [41]

and E. B. Vinberg [50]) proved that
HKg(t)(l —mt+HR(t)) > 1
1-t T1-t
formally. This inequality has the following interesting corollary. Suppose that

there exists a number 0 < t; < 1 such that the series Hg(t) converges at o
and 1 — mtg + Hr{to) < 0. Then the group G is infinite.

Definition 1. We say that a pro-p group G is a Golod-Shafarevich (GS) group
if it has a presentation with the above property.
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Every GS-group is infinite. For example, if |R| < m?/4 then such a to
exists and therefore G is a GS-group. In [58] it is proved that every GS-group
contains a nonabelian free pro-p as a subgroup.

A discrete group is GS if its pro—p completion is GS.

Examples of GS—groups.

(1) As we have mentioned above, E.S. Golod constructed a finitely gener-
ated p—group, which is GS and therefore infinite.

(2) A. Lubotzky [28] showed that the fundamental group of a hyperbolic
3-manifold has a finite index subgroup which is G5, for all but finitely
many p.

(3) Let S be a finite set of primes, p ¢ S. Denote the maximal p—extension
of Q unramified outside S (allowing ramification at infinity) as Qs,
Gs = Gal(QS /Q). L Shafarev1ch [45] proved that Gg has a presenta-
tion (T1,...,Zm | TP = [z, a5, 1 <i< m),m=|S| and therefore is
GS for m > 4

In the same way we can define GS-algebras [13]. The most natural con-
text for it is the category of topological profinite algebras, but we will restrict
ourselves only to graded algebras.

Let K(X) be the free associative algebra on the set of free generators X =
{x1,..., zm} over the field K. Assigning the degree 1 to generators from X
e
we define a gradation on K(X) =K -1+ Y K(X);.
=1
o0
Let R be a graded subspace of > K(X);,, R; = RN K(X);. The formal
=2

series Hg(t Z(d1mR )t* is called the Hilbert series of R. The algebra

A= (X |R=(0 )) presented by the generators X and the relators R is graded,
A= Z Ai, Ha(t) = Z(dlmA )t'. E. S. Golod and I. R. Shafarevich proved

that H A( (1 —mt+ H R(t)) 1. As in the case of groups this inequality
implies that if there exists a number ¢y such that Hg(t) converges at to and
1—mito+Hg(ty) < 0 then A is infinite dimensional. If A has such a presentation
then we say that A is a GS-algebra.

J. Wilson [54] proved that every discrete GS—group has an infinite torsion
homomorphic image and every (S-algebra has an infinite-dimensional nil ho-
momorphic image.
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III. Growth and GK—-dimension

Let G be a group which is generated by a finite set S, 1 € S = S~!. Consider
the ascending chain of finite subsets S™ = {s1...s, | 8; € S}, =S5 C 52 c
<o, G=U%, 8" We say that the group G has a polynomial growth if there
exists a polynomial f(¢) such that |S| < f(n) for all n. This property does
not depend on a generating set and has origin in geometry (see [9], [34], [44]).
Answering a question of J. Milnor, M. Gromov [15] proved that a group has
polynomial growth if and only if it has a nilpotent subgroup of finite index. In
particular it implies that a torsion group having a polynomial growth is finite. I
am not aware of any proof of this fact that does not rely on Gromov’s theorem.

Now let A be a K-algebra, which is generated by a finite dimensional sub-
space S. Let S™ be the subspace of A which is spanned by all products in
S of length < n (with all possible brackets). As above S = §' < §% <
oo, dimg S™ < oo, nng” = A.

The algebra A has a finite Gelfand—Kirillov dimension (or a polynomial
growth) if there exists a polynomial f(t) such that dimg S™ < f(n) for all
n > 1. In this case the Gelfand-Kirillov dimension is defined as GK dim(A) =

In di n
lim sup n_llmi (see [11], [23]).

Problem 4. (L. Small). Does there exist an infinite dimensional nil algebra
of finite GK—dimension?

Recently T. Lenagan and A. Swoktunowicz [27] constructed infinite dimen-
sional nil algebras of finite GK-dimensions over countable fields.

Problem 5. Is it true that an arbitrary GS—algebra has an infinite dimensional
homomorphic image of finite GK-dimension?

If the answer is YES then it provides examples of infinite dimensional nil
algebras of finite G K—dimension over arbitrary fields.

IV. Self-similar Lie algebras

As we have mentioned above, after the counterexamples of Golod and Sha-
farevich new finitely generated infinite torsion groups were constructed by (i)
S. V. Alyoshin, R. I. Grigorchuk, N. Gupta -S. Sidki, V. Sushchansky, not to
mention (ii) infinite torsion groups of bounded degree of P. S. Novikov and S. L.
Adian and Tarski Monsters of A. Yu. Ol'shansky. The groups (i) are residually
finite whereas the groups (ii) are not. The Grigorchuk groups are of particular
interest since they are of intermediate growth: the sequence |S*| < |S?| < ---
grows faster than any polynomial but slower than any exponential function. Is
there an analog for algebras?
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The Grigorchuk group is a group of automorphisms of a regular rooted tree.
It is natural therefore to look for “Grigorchuk algebras” among algebras of
differential operators in infinitely many variables (which correspond to infinitely
many vertices of a tree). The first such construction was suggested by V.
Petrogradsky for fields of characteristic 2 [37]. I. Shestakov and E. Zelmanov
[49] generalized it and extended to algebras of arbitrary positive characteristics.

Let K be a field of characteristic p > 0; T = Klto,t1,... | t# =0, i >
0] is the polynomial algebra in countably many truncated variables. Denote
0; = d/dt;. An arbitrary derivation of the algebra T' can be represented as an
infinite sum " a.;0;, a; € T.
i=0
o0
Let Dy consist of derivations ¥ a;8;, a; € T, with the following properties:
=0
(1) every coefficient a; depends only on ty,...,%i—2,
(2) there exists a constant ¢ > 0 such that each a; involves only monormials
of degree 2 i{p—1) — ¢
It is not difficult to check that Dy is a Lie algebra, which is closed with
respect to p—powers.
Let T denote the ideal of T spanned by all monomials of degree > s. Let
D be the algebra of all derivations of T'. Clearly, QlTsD = (0), the subspaces
§2

T*D N D define a topology on D.
Let Dgn = {3 @:0;} be the subspace of D consisting of finite sums and let
=0
D = Ql(Dﬁn + (T°D N D)) be the closure of Dg,. Consider the Lie algebra
S22
L=D¢gnN Eﬁn.
Theorem 1 ([37], [49]). (a) An arbitrary element of L is nilpotent;

(b) Consider the elements v, = 0, + Y. (to---ti—2)?""0; of L. The Lie
i=n+1

algebra Lie {(vq,v2) generated by vi, vy is not nilpotent and has Gelfand-Kirillov

dimension lying between 1 and 2.

Let A be the associative subalgebra of End;T generated by v1,va.
Problem 6. Is A a nil algebra?

If yes, then A would provide another counterexample to The Kurosh Prob-
lem. Remark, that A is of subexponential growth (see [47]).

An important still unresolved part of The Kurosh Problem is The Kurosh
Problem for division algebras.

Problem 7. Do there exist infinite dimensional finitely generated algebraic
division algebras?
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Even a weaker version of this question is still open.

Problem 8. Do there exist infinite dimensional finitely generated division
algebras?

There is a reasonable expectation that the Lie algebras described above may
be of some help.

Let U be the universal associative enveloping algebra of Lie (v1,v2). Let Z
be the center of U. From the case (a) of the theorem above it follows that for
an arbitrary element a € Lie(vy, v2) some power a?" falls into Z. Consider the
ring of fractions D = (Z ~ {0})~'U..

Problem 9. Is D an algebraic division algebra?

- V. Property tau and dimension expanders

Let X = (V,E) be a finite connected graph. Let ¢ > 0. For a subset of
vertices W C V let W denote its boundary OW = {v € V | dist(v, W) = 1}.
We say that X is an e—expander if for every W C V with |W| < 1|V we have
(WUaW| = (1+¢)|W]| (see [38], [53]).

Of particular interest are families of k—-regular e—expander graphs, where k
and ¢ are fixed but |V| — oco. The first explicit examples of such families are
due to G. A. Margulis [33]. He noticed that if G is a group with the Kazhdan
property(T) (see [22]), which is generated by a finite set Sand p; : G — G, isa
family of epimorphisms onto finite groups G;, S; = pi(S), G; = (Si), then the
family of Cayley graphs Cay(G;, S;) is an expander family. In fact, to produce
a family of expanders the group G does not need to satisfy the property (T).
This led to the following definition (see [30]): a group G generated by a finite
set S has property (1) if there exists € > 0 such that for every homomorphism
onto a finite group G/, S — S', the Cayley graph Cay(G',S’) is an e-expander.

Motivated by some considerations from theoretical computer science B.
Barak, R. Impagliazzo, A. Shpilka and A. Wigderson [5] suggested a notion
of a dimension expander.

Definition 2. Let K be a field, m > 1, € > 0, V a vector space of dimension
n over K and T4, ...,T,, are K-linear transformations from V to V. We say
that the pair (V,{T;}7,) in an e-dimension expander if for every subspace W

of dimension < n/2 we have dim(W + Y T;W) > (1 4+ ¢) dim W.
=1

In [53] A. Wigderson posed a problem of finding an explicit construction of
a family of dimension expanders with K, m, ¢ fixed but dimg V' — oo.

It is tempting to approach the problem through infinite dimensional “al-
gebras with property 77, whose finite dimensional irreducible representations
would produce a desired family of dimension expanders. We suggest the fol-
lowing definition.
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Definition 3 ([31]). A residually finite associative K—-algebra A generated by
a finite dimensional space S satisfies the property 7 if there exists € > 0 such
that for every infinite dimensional residually finite

A-module 4 Vwithout nonzero finite dimensional submodules for every finite
dimensional subspace W of V' we have dim(W + SW) > (1 +¢)dim W.

Theorem 2 ([31]). Let p be a prime number, K, = Z/pZ, G = SL*(n, K[t]),
n > 3, is the congruence subgroup of the special linear group over the ring
of polynomials Kplt]. Let K be a field of zero characteristic. Then the group
algebra KG has property 7.

This theorem provides examples of dimension expanders over fields of zero
characteristics. The case of finite fields is still open.

Problem 10. Let p and g be distinct primes. Does the group algebra
K [SL*(n, Kpt])),n > 3
satisfy property 77
We even don’t know an answer to the following question.
Problem 11. Let K be a field of zero characteristic. Does the group algebra
K[SL(3,Z)] satisty 77
V1. Golod—Shafarevich construction and property 7

We will start with the following long standing question on hyperbolic 3-man-
ifolds.

The Virtual Haken Conjecture. Every irreducible compact 3-dimensional
hyperbolic manifold has a finite sheeted cover which is Haken, or, equivalently,
every cocompact lattice I' in SL(2, C) has a finite index subgroup which is
either a free product with amalgam, or an HN N—construction.

M. Lackenby recently showed [25] that an important part of the conjecture
above would follow if one proved that the cocompact lattice I' does not have
property T.

Conjecture 1. (A. Lubotzky—P. Sarnak, [29]) A lattice in SL(2,C) does
not have property 7.

We have mentioned above that for all but finitely many prime p such that a
lattice has a subgroup of finite index which is GS (section II, example 2). The
Lubotzky—Sarnak conjecture would follow, therefore, if all GS pro—p groups
did not have 7. However recently M. Ershov [10] proved that positive parts of
certain Kac—Moody groups over finite fields are G.S—groups and are known to
have property T. ([8], [40]).
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What distinguishes GS—groups of hyperbolic 3-manifolds among all GS—
groups? For example, GS—groups of hyperbolic 3—manifolds are hereditary
GS, that is, every subgroup of finite index of such a group is again GS. It
follows because a subgroup of finite index of a 3—-manifold group is again a
3-manifold group [28].

T. Voden [52] addressed this question for graded algebras.

Theorem 3 ([52]). (a) Let A be an m generated graded algebra, presented by
< 3(Z - 1)? homogeneous relators of degree > 2. Then infinitely many
Veronese subalgebras A™ are GS;

(b) if in addition A is quadratic and the number of relators is < s=m? then
infinitely many Veronese subalgebras are GS;

(¢) for generic quadratic algebras (see [3]) the bound %rrﬁ is sharp. If the
number of relators is < 24—5m2 then all but finitely many Veronese subalge-
bras are GS; if the number of relators is 2 %mQ then all but finitely many
Veronese subalgebras are not GS.

Conjecture 2. A GS-algebra does not have 7.

Remark that this result would follow if the conjecture about infinite homo-
morphic images of finite GK—dimension from the section III were true.

As in the section I we can reduce the question to quadratic algebras and
even to generic quadratic algebras.

Conjecture 3. Let A = A; + Az + -+ be a graded algebra generated by
Ay, dim A; = m and presented by < m?/4 generic quadratic relators. Then all
but finitely many Veronese subalgebras can be epimorphically mapped onto the
polynomial algebra Kt].
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