DOI QR코드

DOI QR Code

Properties of Chemical Vapor Deposited ZrC coating layer for TRISO Coated Fuel Particle

화학증착법에 의하여 제조된 탄화지르코늄 코팅층의 물성

  • Kim, Jun-Gyu (Department of Advanced Material Science and Engineering, Yonsei University) ;
  • Kum, E-Sul (Department of Advanced Material Science and Engineering, Yonsei University) ;
  • Choi, Doo-Jin (Department of Advanced Material Science and Engineering, Yonsei University) ;
  • Lee, Young-Woo (Nuclear Materials Technology and Development, Korea Atomic Energy Research Institute) ;
  • Park, Ji-Yeon (Nuclear Materials Technology and Development, Korea Atomic Energy Research Institute)
  • 김준규 (연세대학교 신소재공학과) ;
  • 금이슬 (연세대학교 신소재공학과) ;
  • 최두진 (연세대학교 신소재공학과) ;
  • 이영우 (한국원자력연구소 원자력수소생산사업팀) ;
  • 박지연 (한국원자력연구소 원자력수소생산사업팀)
  • Published : 2007.10.31

Abstract

The ZrC layer instead of SiC layer is a critical and essential layer in TRISO coated fuel particles since it is a protective layer against diffusion of fission products and provides mechanical strength for the fuel particle. In this study, we carried out computational simulation before actual experiment. With these simulation results, Zirconium carbide (ZrC) films were chemically vapor deposited on $ZrO_2$ substrate using zirconium tetrachloride $(ZrCl_4),\;CH_4$ as a source and $H_2$ dilution gas, respectively. The change of input gas ratio was correlated with growth rate and morphology of deposited ZrC films. The growth rate of ZrC films increased as the input gas ratio decreased. The microstructure of ZrC films was changed with input gas ratio; small granular type grain structure was exhibited at the low input gas ratio. Angular type structure of increased grain size was observed at the high input gas ratio.

Keywords

References

  1. Kazuo MINATO, Kousaku FUKUDA, 'Chemical Vapor Deposition of Silicon Carbide for Coated Fuel Particles,' J. Nucl. Mater., 149 233-46 (1987) https://doi.org/10.1016/0022-3115(87)90482-X
  2. S. Kouadri-Mostefa, P. Serp, M. Hemati, and B. Caussat, 'Silicon Chemical Vapor Deposition (CVD) on Microporous Powders in a Fluidized Bed,' Powder Technology 120 82-7 (2001) https://doi.org/10.1016/S0032-5910(01)00351-5
  3. H. Nickel, H. Nabielek, G. Pott, and A.W. Mehner, 'Long Time Experience with the Development of HTR Fuel Elements in Germany,' Nucl. Eng. Des, 217 141-51 (2002) https://doi.org/10.1016/S0029-5493(02)00128-0
  4. Gregory K. Miller, David A. Petti, Dominic J. Varacalle Jr., and John T. Maki, 'Statistical Approach and Benchmarking for Modeling of Multi-dimensional Behavior in Triso-coated Fuel Particles,' J. Nucl. Mater., 317 69-82 (2003) https://doi.org/10.1016/S0022-3115(02)01702-6
  5. C. M. Hollabaugh, R. D. Reiswig, P.Wagner, L.A.Wahman, and R.W.White, 'A New Method for Coating Microspheres with Zirconium Carbide and Zirconium Carbide-carbon Graded Coats,' J. Nucl. Mater., 57. 325-32 (1975) https://doi.org/10.1016/0022-3115(75)90217-2
  6. D. R. Lide (Ed.), Handbook of Chemistry and Physics, 78th ed., CRC Press LLC, pp. 4-98, 1997-1998
  7. K. Minato, K. Fukuda, H. Seiko, A. Ishikawa, and E. Oeda, 'Deterioration of ZrC-coated Fuel Particle Caused by Failure of Pyrolytic Carbonlayer,' J. Nucl. Mater., 253 13-21 (1998) https://doi.org/10.1016/S0022-3115(97)00319-X
  8. J. G. Kim, E-Sul Kum, D. J. Choi, S. S. Kim, H. L. Lee, Y. W. Lee, and J. Y. Park, 'A Study on the CVD Deposition for SiC-TRISO Coated Fuel Material Fabrication,' J. Kor. Ceram. Soc., 44 [3] 169-174 (2007) https://doi.org/10.4191/KCERS.2007.44.3.169
  9. G. H. Reynolds, 'Chemical Vapor Deposition of ZrC on Pyrocarbon-coated Fuel Particles,' J. Nucl. Mater., 50 215- 16 (1974) https://doi.org/10.1016/0022-3115(74)90158-5
  10. K. Ikawa and K. Iwamoto, 'Coating Microspheres with Zirconium Carbide,' J. Nucl. Mater. 45 67-8 (1972) https://doi.org/10.1016/0022-3115(72)90115-8
  11. H. B. Lee, K. Cho, and J. W. Lee, 'Synthesis and Temperature Profile Analysis of ZrC by SHS Method,' J. Korea. Ceram. Soc., 32 [6] 659-68 (1995)
  12. Obata. N and Nakazawa, 'Superlattice Formation in Zirconium- carbon System,' J. Nucl. Mater., 60 39-42 (1976) https://doi.org/10.1016/0022-3115(76)90115-X
  13. J. Chastain, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corporation Physical Electronics Division, pp. 6,40, 1992