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Measures Of Slope Rotatability For Mixture
Experiment Designs

Jeong cheol Hal)

Abstract

The concept of slope rotatability introduced by Hader and Park(1978) is
available when we are interested in the difference of the responses. Since
there can be constraints on the factor levels in mixture experiments, there
arises a need for adaptation of the concept of slope rotatability and the
measure to assess it. In this article, measures of slope rotatability in
mixture experiments are proposed to quantify the amount of slope
rotatability for a given design. Measures for a restricted region design as
well as for an unrestricted region design are presented. Then, the designs
having different optimalities are compared with respect to these measures
by some examples.
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1. Introduction

In response surface models, we assume that the dependent variable is
adequately approximated by a low order polynomial in % independent variables.
When we concentrate on the second order polynomial model, the algebraic form is
as below.

k k Eok
n(z)= 6, + Z}lﬁﬁi"' Z}lﬁiﬂg + E}l Zﬁiﬂfﬁj (D
= = 1=153>1

It can be rewritten as n{z)==z,/6 in matrix form, where z'= (zy,2q,"*,17,),

’ 2 2 . .
z, = (1,00,T9, ", T} T], -, T} Ty, T, _17,) and B is the corresponding sx]

column vector of regression coefficients, where = (k+1)(k+2)/2.
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A mixture experiment is a special type of a response surface experiment in
which the factors are the ingredients or components of a mixture and the
response is a function of the proportions of each ingredient. In a 4 component

mixture, if x; is the proportion of the sth component, the restrictions on the

q
components are z; =0, 1=1,2,---,q, E%— =1. So the factor space containing the
i=1

g components is a (g— ])-dimensional regular simplex. Suppose an experimenter
is interested in the difference of the responses in a mixture experiment. Then a
design is wanted to have the same variances of the estimated slopes for all
components at the same distance from the baseline where one component has the
value of 0. Since this property is not easy to get, we consider measures to assess
the amount of slope rotatability in mixture designs.

This article consists of five sections. In section 2, concepts of various
rotatabilities are introduced. Measures of slope rotatability in mixture experiments
and their applications are presented in section 3 and 4, respectively. Concluding
remarks are in section 5.

2. Various Rotatabilities

2.1 Rotatability

The coefficients in (1) are to be estimated from N obhservations on the response
variables. The observations are y;(z)=nlz)+e¢, i=1,--,NV, where ¢'s are
assumed to be uncorrelated and have zero means and constant variances, o>. Then

the B is estimated by the least squares method as b= (X' X) 'X'y, where X is an
NxXm matrix of the m-element z,” vectors, taken at the design points, and y is

an NX1 vector of observed responses. The predicted response value is given by
y(z) = z,/b and the variance of the predicted response for a given point is
Var(y(z)) =z, (X’ X) 'z,0>. So Var(y(z)) depends on a particular point =
through #, and depends on the design matrix X via (X' X)'.

A design matrix X is said to be rotatable if the Var(y(z)) is only a function of
p= (a3 + 3 +---+x%)1/2, which is the distance of the point z from the center of
the design. Since rotatahility was introduced by Box and Hunter(1957), the concept
of it has been an important design criterion. When the exact rotatable design can
not be obtained, it is important to know how rotatable it is. Khuri(1988) and Park
et al.(1993) introduced a measure quantifying the amount of rotatability in a given
response surface design.

2.2 Slope rotatability
If the difference of the responses, not the response itself, is of our interest, we
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must introduce a somewhat different concept. Our concern is estimating the first
derivative of n(z) with respect to each independent variable. Then, for the second

order model the first derivative of 1}(:17) with respect to each variable z;,

0 ylz k .
ayi) b+ 2b;; E br;, 1is wanted to have a property analogous to
i =1
G%i
rotatability.

Hader and Park(1978) proposed that if a design satisfies the following conditions
[C1] and [€2], estimates of the slopes over axial directions will be equally reliable
for all points z equidistant from the design origin.

[CL] For each i=1,2,++:k, the variances of 9 y(x)/dx; are equal for all = that
are equidistant from the design origin, that is, Va?‘( d y(x)/ 8 ;) depends on
only through p= (22 + 22+ +22)V2,

[C2] The variances of @ y(z)/ d x;, i=1,2,---,k, are equal, that is,

oy | _ VW( dylx) | _ Var( J y(z)

Var a Iy a o a Ty

for any point x.

They referred to this property as slope rotatability. Park and Kim(1992)
suggested a measure of slope rotatability that enables us to assess the degree of
slope rotatability for a given design. Recently Park et al.(2007), Jang(2005) and
Kim et al.(2004) treated the slope rotatability in various respects.

2.3 Axis slope rotatability in mixture experiments
The concept of slope rotatability can be introduced in mixture experiments. The
general form of the second-degree Scheffé polynomial in ¢ components is
q q q
n(z)= D 8x;+ >, 2 Bxx;. On the axis of the ith component, the other
i=1 i=15>4
components have the same value of (1—=z;)/(g—1) and substituting this
expression for z; for all j =i leads to

o (1—=z;) & (-, g r;(1—x;) CE (1—9@)2
n(@)= B+ Y f—at M+ D f——t B
; 7 gq—1 20 q—1 j:;rl gl J; kgj =1
iZi k=1
Then at the proportion x; on the axis of the ith component, the slope of the
. ) . d
expected response with respect to the i¢th component is 77(:1-7) = Yy; + 11:%;, Where

dx

(2
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=i j=it1 (q

i—1 q q g
o= L[ i~ 18— 36+ T2+ 3] 6, IRpt j

j=1lk>j =1 j=i+1
i#=i k&1

The estimates of ~; and -y; can be obtained by substituting the least squares
estimates of @, and f;;, Hence the variance of the estimated slope is

dy()

I = Var(’y;-)+2C’0v('y;-,'y;-)xi+ Var(’y;-)x?

Var

3. Measures of Slope Rotatability in Mixture Experiments

When a given mixture experiment design is not axis slope rotatable, we want a
measure to assess the degree of slope rotatability. Focusing on the estimated slope
of the response surface along the x;—-direction, it can be rewritten as

Jy , . , . . .
(;/f) =8'(z;)b, i=1,2,-q, where S(z;) is a 1xp vector of coefficients with

which to multiply the elements of a px1 vector b= (X X) 'X'y. The subscript i
associates S; with the ith component.

For example, if ¢=3 and the second-degree equation y(z)=z/b contains
b= (by.by b3 by5,by5,b55), then, for components 1, 2 and 3, respectively

b

1 1 1_2:1;1 1_2:1;1 Il—l)
T2

27 27T 2 T2
, 1 1 1—-2z, x2,—1 1—2x
52 (IQ)_(_5717_57 2 27 22 P 2 2 (2>
, 1 1 rg—1 1—2x; 1—2xz,
S3 (I3):(_57_5717 2 5 2 5 2

The variance of the estimated slope along the z,-direction at x; =t, denoted by
Var,(t), is Var,(t)=8/#)(X'X)"'S(t)o® and the average of Var,(t) for all

components, denoted by Var(t), is Var(t ES “18(t)a?

111
To measure the discrepancy of variance in the ith component at z, =1{, let us

introduce the following quantity.
2

D-(t):?(Vari(t)—W(t))Qz ()X X)” ——ES “Ls(0)]

K j71
Then summing up on ¢ and dividing by the number of components leads to the
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J
quantity, D(t), which can be expressed as D(t)Z%S(t)([q—?q)S(f), where
S(f):<S1/(t)(XlX)7151@)7'”75,1/@)(1\”)()71Sq(t)>, I is a ¢Xq unit matrix, and J,

q
1s a g>g matrix whose elements are all 1.
When we are interested in all the range of components, that is, in case of the

unrestricted region of interest, we must get the average of D(t) for 0 <t < 1.

(X)Z%. It
1+f D(t)dt

ranges between 0 and 1 and equals 1 if and only if the design given by X is
axis slope rotatable. It is close to O when the design is far from being axis slope
rotatable. By the adjacency of this measure to 1, we can measure the axis slope
rotatability for a given design matrix in an unrestricted region.

But, in many cases, the region of interest is restricted, and then the proposed
measure of slope rotatability given above may not be practical. So we need to
give a somewhat different measure with a narrower integration interval. Suppose
that the bounds for each component are given by ¢, <z; <b, i=1,2,---,q and

Then the proposed measure of slope rotatability is #,

we can  get Gni, =min{ay,ag0,b  and by, =max{by,by b}, Then the
proposed measure of slope rotatability may be modified to
1
(0= .
1+f D(t)dt/ by — i)

3)

H.(X) has the value of 1 for an axis slope rotatable design and the probable
range of H, (X) is also between 0 and 1.

4. Applications of the Proposed Measures

4.1 Case of axis slope rotatable designs

It was stated that all axis slope rotatable designs have only one value of the
measure, 1. To show this, consider the simplex lattice design with 3 components
which has the following model matrix Xj.

1 0 0 0 0 0
0O 1 0 0 0 0
0O 01 0 0 0
2/31/61/6 1/9 1/9 1/36
1/62/31/6 1/9 1/36 1/9
1/61/62/31/36 1/9 1/9
0 1/21/2 0 0 1/4
1/2 0 1/2 0 1/4 0
1/21/2 0 1/4 0 0
1/31/31/3 1/9 1/9 1/9
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This case has three components involved and 8, (z;), & (z5) and S (z;) are
shown in (2). By easy calculation, S(t) can be showed as
S (t)=(11.75—42.72t + 44.451*,11.75— 42.72t + 44.45¢>,11.75 — 42.72t + 44.45¢%).  For
the same ¢, the discrepancy does not occur, because the variance of the estimated
slope along the ;-direction has the same form. That is to say, Var,(t) has the
same value as Var(t) for a given t. So D;(t)’s and D(t) of X, are given by 0
and hence H_(X,) is 1, as is our expectation.

For illustration the design points of X, is given in Figure 1. The filled circle is
one design point.

®1

& 1 design point

Figure 1. Design points of a simplex lattice design when ¢ =3

The representative of the axis slope rotatable designs is the symmetric simplex
design by Murty and Das (1968). The simplex lattice design and the simplex
centroid design are obviously particular cases of the symmetric simplex design, so
they have the same value of measure H.(- ), 1.

4.2 Case of non slope rotatable designs with unrestricted regions

Among design optimality criteria, D-optimality is the best known and the most
used one. A D-optimal design is one in which det(X X/N?) is maximized, where
p is the number of parameters in the model and N is the number of data points.
The second most popular one is A-optimality which makes the sum of the
variances of the estimated coefficients minimized. Using the OPTEX procedure in
SAS the 10 point D-optimal design X; having X; as candidate points can be
obtained as below:
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S (t) of X, is given as
S (t)=(10.75— 37t + 37t%,10.75— 37t + 37¢%,10.75 — 41t + 43t*). Then, D(t) of X,
and the value of the measure can be obtained as
D(t)=3.55t>—10.67t + 8" and H.(X,)=0.894.

The 10 point A-optimal design X, having X, as candidate points can bhe
obtained as below.

1 00 0 0 0
01 0 0 0 0
00 1 0 0 0
0 0 1 0 0 0

y —| 01/21/2 0 0 1/4

o= 0 1/21/2 0 0 1/4
1/2 0 1/2 0 1/4 0
1/2 0 1/2 0 1/4 0
1/21/2 0 1/4 0 0

1/21/2 0 1/4 0 0
D(t) of X, is given as D(t)=0.03—0.58t+3.97t> — 11.67¢> +12.54t* and
H.(X,)=0.607. The replication of the vertex point of x; ends in breaking the

slope rotatability. Comparing these two alphabetic optimal designs, though neither
of them is slope rotatable, X, is more slope rotatable than X, in the measure of
H(-).
4.3 Case of non slope rotatable designs with restricted regions

We now consider the case where there are both lower and upper bounds on the
component proportions. In this case, the feasible mixture region is no longer a
simplex. To illustrate, use the example in Myers and Montgomery(1995). Suppose
that we wish to formulate a shampoo in terms of proportions of three components
z; = lauryl sulfate, z, = cocamide, and z; = lauramide with bounds
04<z <06, 014 <2y <02 and 0.26 <z, < 04. Here, a,;,, = 014 and b, =
0.6.

The extreme vertices of the constrained region are formed by the combinations
of the upper and lower bound constraints. The design matrix formed by this
strategy, containing 13 data points, is given as below:
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.60 .140 .260 .08400 . 15600 .036400
54200 .260 .10800 . 14040 .052000
140 .200 .400 .08000 . 16000 .080000
46 .140 .400 .06440 .18400 .056000
57.170 .260 .09690 . 14820 .044200
53140 .330 .07420 .17490 .046200
X,,= | .47 .200 .330.09400 .15510 .066000

43170 .400 .07310 .17200 .068000
55.155 .295 .08525 . 16225 .045725
52185 .295 .09620 . 15340 .054575
45 .185 .365 .08325 . 16425 .067525
48 .155 .365 .07440 .17520 .056575
50.170 .330 .08500 . 16500 .056 100

This design matrix contains the four vertices of the region, the four edge
centers, the overall centroid, and the four axial runs that lie midway between the
centroid, so there are 13 design points in all. The region of interest and the
design points are in Figure 2, and the measure of slope rotatability has the value,

H.(X,,)=1.699x10" " The smallest parallelogram containing the design points is
the region of interest in the shampoo foam experiment. The filled circle is one
design point.

a1

* 1 design point

0N

Foaure 2 Degen parts of the a 13 port extrame vertices design

Now, we will construct a D-optimal design for this problem, assuming that the
experimenter is planning to fit a quadratic model. We will specify the design
points of the extreme vertices design mentioned previously as our candidate design
points. We get the D-optimal design X,,, and the region of interest and the
design points are in Figure 3. The measure of slope rotatability has the value,
H.(X,,)=6.41662>10""",
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*x1
» 1 design point
& Z design poirts

AN

Figure 3. Design points of a 13 point D-optimal design

We also consider the distance-based design with four replicates for the shampoo
form experiments, say, X,,, also. The measure of slope rotatability in (3) can be
applied and has the value, H,(X,,)=6.00406<10" ", When the three designs are
compared in terms of the proposed measure of slope rotatability, X,, is better
than the others which have almost same values.

4.4 Further comments

When we think the integration is rather time-consuming and that only the
design points are important to consider, we can use H, (- ), a discrete version of
H.(-).

1+ _ZPJD(di)/p 14 _ijs’(di)(lq— %)S(di)/pq

where {dl,"',dp} are different design points and p is the number of different

H, (X)

m

)

design points.
Since, for a slope rotatable design, D(d;) is zero for all d;, this measure H, (- )
also ranges between 0 and 1. When a given design is slope rotatable, as all the

S(di)(lq— ?q)S(di) (i=1,2,---,p) are zeros, the measure given above has the value
of 1.
Though H,(+ ) is more reasonable than H.(-) when a region of interest is

restricted, a more reasonable but a little complicated integration interval can be
found. Since the upper and lower boundaries of each component are not always
attainable, the boundary of one component can he adapted by the others. In (3)
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i and b,,. can be replaced by a,;, and b.., where a,;, =max{a, i Gum ),
% q
bmax = min{bmax’bcom}) acom = mln{(l_ Ebj)’ Z: 1’?q} and
i=i
q
beom = max{(1— Yja;), i=1,-,¢}). Then the new measure denoted by H,(-)
i=i
can be obtained as below:

1

- b ; .
1+f D(@)dt/ (b oy — Qi)

H,(X)

n

5. Concluding remarks

Four similar but different measures of slope rotatability in mixture experiments
are proposed in this article. The simplest H.(+ ) can be used only when a region
of interest is not constrained. But giving 0’s and 1's to all a’s and b’s
respectively, it is a mere special case of H.(- ). So H.(-) is a more general
form of the measure. The integration interval of H,.(: ) is so loose that a tighter
interval is needed. The result of such need is #,( - ). But in most cases, H,( - )
equals to H.(-).

All the above three measures are considering the average discrepancy of
variance in a continuous manner. But a clumsy measure, H, (- ), treats it in a
discrete manner. Though it has a simpler form, the realization by a computer
package 1s more difficult than the others.

As a D-optimal design is not always A-optimal, one design having a larger
value than another design in one measure does not always have a larger value in
another measure. Obviously, the slope rotatable design gives the value 1 for all
the given measures. Often, these measures have very small values in restricted
region cases.
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