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Reliability P(Y<X) in Two
Independent Uniform and Weibull-Gamma

Jungsoo Wool)

Abstract

We consider estimation of reliability P(Y<X), when X and Y are two
independent Weibull random variable and uniform random variable,
respectively, and also consider the estimation problem when X and Y are
two different independent Gamma random variable and uniform random
variable, respectively.
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1. Introduction

Many authors have considered properties of Weibull and uniform distributions in
Johnson, et al(1994). McCool(1991) considered inference on reliability P(X<Y)
when X and Y have the same Weibull distributions. Ali & Woo(2005a,b) studied
inference on reliahility P(Y<X) when X and Y are the same power function
distributions and the same Levy distributions. And in recent, Kim(2006), and Lee
& Won(2006) and Woo(2007) studied inference on reliability in two independent
exponentiated uniform distributions, exponential distributions, and triangle
distributions.

For application of this case P(Y<X), X, representing time to sustain temperature,
1s a uniform random variable and Y, representing time to sustain life of a vacuum
tube, 1s a Weibull random variable, and X, representing time to sustain
temperature, is a uniform random variable and Y, representing to time to sustain a
velocity of particles in a uniform vapor, is a gamma random variable.

In this paper, we derive the density of quotient X/Y, and consider point and
interval estimations of reliahility P(Y<X) when X and Y are independent Weibull
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random variable and uniform random variable, respectively, and also derive the
density of quotient X/Y, and consider the estimation problem when X and Y are
two different independent gamma random variable and uniform random variable,
respectively.

2. Weibull and Uniform

In this section, we consider the case for the estimation of P(Y<X) when (X, Y)
is a pair of Weibull and uniform random variables, respectively. As an application
of this case, X, representing time to sustain temperature, is a uniform random
variable and Y, representing time to sustain life of a vacuum tube, is Weibull
random variable.

2.1 Quotient and reliability
Let X and Y be independent Weibull and uniform random variables with the
densities, respectively:

fxlz)= %Iailei(wﬁ)a, if 0<zx<co
fyly)=1/6, if 0<y<0 , where a,(3, and 6 are positive. 2.1

Let W=X/Y. Then, from the quotient distribution in Rohatgi(1976, p.141) and the
formula 3.381(1) in Gradshteyn and Ryzhik(1965. p.317), the density of W=X/Y is
given by:

fW(w):qu-'y(l—!—é, e w®) ) p, if0<w< oo 2.2

where v(a,z) is the incomplete gamma function. and p = 6/5 .

By transformation of variable, x=p®- w" in the density (2.2), and the formula
13.42 in Oberhettinger(1974, p.144) and the formula 15.1.20 in Abramowitz and
Stegun (1970, p.556), integration of the function in (2.2) over(0,c) is 1.

From the density (2.2) and the formula 13.42 in Oberhettinger(1974, p.144), we can
obtain the k-th moment of W=X/Y when X and Y are independent Weibull
random variable and uniform random variable, respectively.

E(Wk):F(§+1)- 2F1(1,1+§;2+§ /(L a)ph), if atbl>k

where ,F(a.b;c;z) is the generalized hypergeometric function, and I'(a) is the

gamma function.
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Especially if k=1 and 2, then we derive the expectation and 2nd moment of W:
1 1 1

E(W):F(E‘Fl)' QFl(l,E—i—l;E—i—Q;l)/((a—i—l)p)
and EOW)=1(E241) - 5B (L2415 42310/ (1+a)p), ifa>1 .

Remark. The numerical values of F(ab;c;x) can be evaluated by an integral
representation in Abramowitz and Stegun (1970, p.558).

From the density (2.2), and the formulas 3.381(1) in Gradshteyn and Ryzhik(1965,
p.317), we obtain the reliability P(Y<X):

Fact 1. When X and Y are independent Weibull random variable and uniform
random variable with the densities (2.1) with known «a , respectively, then, for

[N ) 1 1 . .
p=10/8, R=PY<X)=¢e * +;-7(E+1,pa ) is a function of p .

. d _ a—1 -z d — L (6]
Since %7(a,x)—x e’ so dpP(Y<X)— 7(a+1,p ) <0,

and hence we obtain the following:

Fact 2. If X and Y are independent Weibull random variable and uniform random
variable and the shape parameter o in the density (2.1) is known, then reliability
R=P(Y<X) is a monotone decreasing function of p=6/5 .

2.2. Estimating reliability P(Y<X)

From Facr 2, because R=P(Y<X) is a monotone function of p when the shape
parameter o in the density (2.1) is known, an inference on the reliability is
equivalent to an inference on p (see McCool(1991)).

So we consider estimation on p=6/8 when Sandf are parameters in the
densities (2.1), instead of estimating R=P(Y<X), when the shape parameter a in
the density (2.1) is known.

Assume X;,X5,... X, and ¥}, V5,..., ¥, be two independent samples from X and

Y with the densities (2.1), respectively and the shape parameter a in the density
(2.1) is known. Then, from the formula 3.381(4) in Gradshteyn and Ryzhik(1965,
p.317), we derive the following results:

Fact 3. (a) If X;,X5,...,X,, are a sample drawn from a Weibulll distribution with

density(2.1), then Z= EX;‘ follows a gamma random variable with shape
i=1

parameter m and scale parameter 5%, B(1/Z2Y=T(m—1/a)/(I'(m) - 3), and
E(I/XQ/Q):F(m—Q/a)/(F(m) - 8, ifma>2.
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(b) If X follows a gamma distribution with mean a and variance ab®, then
E1/Xx)=1/((a=1)b) and P1/X*)=1/((a—1)(a—2)b?), if a> 2.

When the shape parameter « in the density (2.1) is known, the MLE 8 of 8

and the MLE 6 of 0 are given by:

B=m Ve (XM x2 )V and 6= Y,

=1

respectively, where Y(,) =max(Y},¥,...¥,) .

n

Hence the MLE p of p is p=0/8=m"" - Y(n)/(_EXﬁ We

=1

From the results in Fact 3 and density of the greatest order statistics Y, :

n o,
Tv, W)=y Lo<y<o

we obtain the expectation and variance of D :

N
E(p):m 'm'ﬁ, if ma>1
ey D= D) e Pme )
Var(p) = Tm) [ o (s 12T (m) 1 p if am> 2

) Mm—2) n-Pm-L)
~_ (n+17I(m) a’ « o .
Y T B Py S e R

2.3)

(2.4)

(2.5)

(2.6)



Reliability P(Y<X) in Two 787
Independent Uniform and Weibull-Gamma

From the results (2.4), (2.5) and (2,6), Table 1 shows mean squares errors(MSE)
of the MLE D and the unbiased estimator p of p=0/8

<Table 1> Mean square errors of MLE D and unbiased estimator p (unit: p? )

a=2 a=3 a=4 a=6

p p p p p p p p

10| 10| 0.03562 | 0.03672 | 0.02272 | 0.0206Z2 | 0.01875 | 0.01516 | 0.01625 | 0.01134
10| 20| 0.02996 | 0.03049 | 0.01441 | 0.04486 | 0.09526 | 0.01564 | 0.00632 | 0.00526
10] 30| 0.02961 | 0.02922 | 0.01308 | 0.01324 | 0.00784 | 0.00782 | 0.00435 | 0.00402
20| 10| 0.02401 | 0.02169 | 0.01849 | 0.01419 | 0.01675 | 0.01161 | 0.01564 | 0.00978
20| 20| 0.01151 | 0.01555 | 0.00887 | 0.00810 | 0.00670 | 0.00553 | 0.00524 | 0.00371
20| 30| 0.01410 | 0.01429 | 0.00703 | 0.00686 | 0.00469 | 0.00429 | 0.00310 | 0.00248
30| 10) 0.02076 | 0.01706 | 0.01729 | 0.01218 | 0.01618 | 0.01049 | 0.01546 | 0.00929
30| 20| 0.01145 | 0.0109 | 0.00725 | 0.00609 | 0.00586 | 0.00442 | 0.00492 | 0.00322
30| 30| 0.00972 | 0.00970 | 0.00525 | 0.00486 | 0.00375 | 0.00318 | 0.00272 | 0.00199

m n

From Table 1, we observe the followings:

Fact 4. The unbiased estimator p performs better than the MLE D in a sense of

MSE, when (i) =4, m and n=10, 20, 30, () a=3, m =20, 30 and n=10, 20,

30, and (ii) @ =2, m=30 and n=10, 20, 30.

Now when the shape parameter a in the density (2.1) is known, we consider an

interval estimator of p . From the quotient density in Rohatgi(1975, p.141) and the

formula 3.381(1) in Gradshteyn and Ryzhik(1965, p.317), Q@Q=p - (EXf)l/a/ Yo
i=1

1s a pivot quantity having the following density:

fQ(x):n-gf"*l-'y(m—i—%, z* )/ I'(m), ifz>0. 2.7
From the formula 13.42 in Oberhettinger(1974, p.144) and the formula 15.1.20 in
Abramowitz and Stegun (1970, p.556), integration of fg(x) in (2.7) over(0,00) is
unity. For given 0<p,<1, i=1,2, there exist /p,) and«(p,) such that

l(;nl) oo
[ ez =p and [ poteiiz=p, . 8)
0 u (p,)

Based on the density (2.7) of the pivotal quantity Q=p - Y, X,/ Y(,)» when a is
=1

known, a (1—p,—»5)100% confidence interval of p is:
(Upy) + ¥y / (O0XE ulpy) + Vi / (DX
=1 =1
As applying an asymptotic confidence interval, since the MLE p is consistent
estimator of p from the results (2.4) & (2.5), an asymptotic confidence interval of
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p is given by: For a given  0<y<l1,

A e, Tm=2) ne =)
A AR s
s, Ti=2) a1 )
e o\ ey e o)

is an (1—)100% asymptotic confidence interval of p,

where p=m!/® Yo/ (DS X° /e and f o(t)dt =~/2, u= 25 0(t) is the

i=1
standard normal density.

3. Gamma and uniform

In this section, we consider the case for the estimation of P(Y<X) when (X, Y)
is a pair of gamma and uniform random variables, respectively. As an application
of this case, X, representing time to sustain temperature, is a uniform random
variable and Y, representing to time to sustain a velocity of particles in a uniform
vapor, 1s gamma random variable.

3.1. Quotient and reliability
Let X and Y be independent gamma and uniform random variables with the
1

I'lo)o®
fyly)=1/0, if 0<y<6 , where a,o,and 6 are positive. 3.D

densities:  fy(z)= ¢ 16796/0, if 0<z<oo

Let W=X/Y. Then, from the quotient distribution in Rohatgi(1976, p.141) and the

formula 3.381(1) in Gradshteyn and Ryzhik(1965, p.317), the density of W=X/Y is
given by:

_ 1 —2

fW(w) = - F(a) w

where v(a,z) is the incomplete gamma function. and 7= 6/0 .

cyla+1,m - w), if 0<w< oo (3.2)

By transformation of variable, =7+ w in the density (3.2), and the formula
13.42 in Oberhettinger(1974, p.144) and the formula 15.1.20 in Abramowitz and
Stegun (1970, p.556), integration of fy-(w) in (3.2) over (0,c0) is obvious 1:

From the density (3.2) and the formula 13.42 in Oberhettinger(1974, p.144), we can
obtain the mgf of W=X/Y when X and Y are independent gamma random variable
and uniform random variable, respectively, each having the density (3.1)
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1
T 14w
where /] (a,b;c;r) is the generalized hypergeometric function.

From the density (3.2) and the formulas 3.381(1) in Gradshteyn and Ryzhik(1965,
p.141), we obtain the reliability P(Y<X):

Fact 5. When X and Y are independent gamma random variable and uniform
random variable, respectively, each having densities (3.1), then, for n=60/c

1

R=P(Y< X)Z“rm[% cvla+1,7)=~(a,n)] .

. (1—%)“- 2F1(1,a;a+2;(1—%)*1). if t<0

mw(t)

ince - e dl _
Since dx‘g(a,x)—x e * , and hence dn[n ya+1, n)—~vla, )1 <0,

and hence we can obtain the following:

Fact 6. When X and Y are independent gamma random variable and uniform
random variable, respectively, each having densities (3.1), the reliability R=P(Y<X)
is a monotone decreasing function of 7=0/c , when « is known.

3.2. Estimating reliability P(Y<X)

From TFact 6, because R=P(Y<X) is a monotone function of n when the shape
parameter o in the density (3.1) is known, an inference on the reliability is
equivalent to an inference on 1 (see McCool(1991)).

And hence, we only consider estimation on 7= 0/0 when o and 0 are parameters
in the densities (3.1), instead of estimating R=P(Y<X).

Assume X;,X,,...,X,,and ¥}, Y5,.... Y, be two independent samples from X and
Y with the densities (3.1), respectively. The MLE ¢ of ¢ and the MLE 0 of 0

are: o= Y, X, /(ma), 0= Y, . if a is known positive.
=1

Therefore, the MLE 7 of 7 is 7=0/d=ma ¥,/ > X, . Based on that X,
i=1 i=1

follows a gamma distribution with « - m and ¢ in Fact 3 and the greatest order

statistics Y, has the density (2.3), we can obtain the expectation and variance

of 1 :
A nma .
E(??)— (n+ 1) (ma—1) n (3.3)
2 2 2 _
Var () = m’na’ (ma+n°+2n—1) P ifam>2. (3.4)

(moz—l)Q(moz—Q)(n—i—l)Q(n—!—Q)
From the expectation (3.3), an unbiased estimator 7 of 7 is defined as:

= (4 1lma— 1) ¥, / (0 3%)

=1
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Hence, from the density (2.3) and Fact 3(b) we also obtain the variance of 71 :

~ ma+n®+2n—1 2
Var(n) = nln+2)ma—2) >

if ma>2 . (35

From the results (3.3), (3.4) and (3.5), Table 2 shows mean squares errors(MSE)
of the MLE 7 and the unbiased estimator 7 :

<Table 2> Mean square errors of MLE ﬁ and unbiased estimator 7 (unit:n®)

From Table 2, we observe the followings:
Fact 7. (a) The unbiased estimator 7 performs better than the MLE 7

a=0.25 a=0.5 a=1
m n ~ = ~ = ~ =
n 7 n n n 7
10 10 491414 2.025 0.46338 0.3444 0.13721 | 0.13435
10 20 540115 | 2.00682 | 0,51299 | 0.33636 | 0.14622 | 0.12756
10 30 5.b866Y | 2.00313 | 053377 | 0.33472 | 0.15155 | 0.12617
20 10 0.46337 | 0.34444 | 0.13721 | 0.13438 | 0.06078 | 0.06435
20 20 0.51299 | 033636 | 0.14822 | 0.12756 | 0.06825 | 0.05792
20 30 0.53377 | 033472 | 015155 | 0.12617 | 0.05914 | 0.05665
30 10 0.21329 | 0.19167 | 0.08217 | 0.08589 | 0.04277 | 0.04435
30 20 0.23259 | 0.18450 | 0.08306 | 0.07937 | 0.03717 | 0.03807
30 30 0,24184 | 0.18305 | 0.08527 | 0.07805 | 0.03688 | 0.03679
(to continue)
a=2 a=4
m n ~ P ~ =
n n n n

10 10 0.06078 0.06435 0.03488 0.03487

10 20 0.05825 0.05796 0.02787 0.02865

10 30 0.05914 0.05666 0.02703 0.02738

20 10 0.03488 0.03486 0.02432 0.02126

20 20 0.02787 0.02865 0.01533 0.01512

20 30 0.02703 0.02738 0.01373 0.01388

30 10 0.02768 0.02572 0.02112 0.01688

30 20 0.01933 0.01955 0.01150 0.01077

30 30 0.01798 0.01830 0.00965 0.00953

sense of MSE, when (i) a=0.25, m and n=10, 20, 30, (i) a=4, m=30 and
n=10, 20, 30, @) a=0.5, m=10, 20 and n=10, 20, 30. and (iv) a=1, m=10 and

n=10, 20, 30. (b) In other cases, the unbiased estimator 7 and the MLE 7
don’t dominate each other.
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Now when the shape parameter a in the density (3.1) is known, we consider an
interval estimator of 7 , from the formula 3.381(1) in Gradshteyn and Ryzhik(1965,
pldD), @Q=n- EXi / Y, 1s a pivot quantity having the following density:
i=1
n
! Q(I) = Tma)

From the formula 13.42 in Oberhettinger(1974, p.144) and the formula 15.1.20 in
Abramowitz and Stegun (1970, p.658), integration of fo(x) in (3.6) over (0,c0) is

one. For given 0<pi<1, i=1,2, there exist {(p;) and u(p,) such that
l(;nl) oo
f fola)de=p,, f fole)de=p, . (3.7
0

ul(p,)

-n

sz " Ve ylmatn, z), if >0, (3.6)

Based on the density(2.7) of the pivotal quantity Q= n_EXi/ Y

=1
a (1—p, —p,)100% confidence interval of 7 is given as:
(lp) - Y/ X, ulpy) - Yip) / X))
i=1 i=1
As applying an asymptotic confidence interval, since the MLE 7 is consistent
estimator of 7 from the results (3.3) & (3.4), an asymptotic confidence interval of
1 is given by: For a given  0<¥<1,

( ﬁ . ﬁ \/ anOzQ(moz—i—nQ—!—Qn—l)
—Zypt M

(ma — 1)2(ma—2)(n+1)2(n+2) '

— ~ m*na’® (ma+n2 +2n—1)
n+Z’Y/2. L/ (

mo— 1)2(ma—2)(n+1)2(n+2)

is an (1—7)100% asymptotic confidence interval of 7, where n=ma Y(n)/ EXi
i=1

and f o(t)dt=~/2, u= 290 o(t) is the standard normal density.
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