Pasteurization of Carrot Juice by High Voltage Pulsed Electric Fields with Square Wave Pulse and Quality Change during Storage

고전압 square wave pulse를 이용한 당근 주스의 살균 및 저장 중 품질 변화

  • Shin, Jung-Kue (Department of Korea Traditional Food Culture, Jeonju University) ;
  • Ha, Koo-Yong (R&D Center, Doosan Coporation) ;
  • Pyun, Yu-Ryang (Department of Biotechnology, Yonsei University) ;
  • Choi, Mun-Sil (Department of Food Science and Technology, Ewha Womans University) ;
  • Chung, Myong-Soo (Department of Food Science and Technology, Ewha Womans University)
  • 신정규 (전주대학교 전통음식문화) ;
  • 하구용 ((주)두산 R&D 센터 주류연구소) ;
  • 변유량 (연세대학교 생명공학과) ;
  • 최문실 (이화여자대학교 식품공학과) ;
  • 정명수 (이화여자대학교 식품공학과)
  • Published : 2007.10.31

Abstract

In this study, carrot juice was treated with high voltage pulsed electric fields (PEF) and the changes in its physical and chemical properties during storage at $4^{\circ}C$ and $25^{\circ}C$ were investigated. The sterility fur bacteria, yeast and mold in carrot juice increased with increasing electric field strength and treatment temperature. While yeast and mold were completely inactivated at 65kV/cm with a treatment time of $200{\mu}s$ in a continuous PEF treatment system, bacteria were reduced by four log cycles. The results also showed that square wave pulse treatment was more effective for inactivating microorganisms than exponential decay pulse, and this effect was more apparent for carrot juice of lower pH. Although we observed significant changes in physical and chemical properties such as soluble solid content, pH, acidity, color, and carotene retention when the PEF treated samples were stored at the ambient temperature $(20^{\circ}C)$, no significant physical and chemical changes were found at the cold storage temperature $(4^{\circ}C)$ during 28 days of storage. The results indicate that the PEF treated carrot juice is appropriate for commercial refrigerated storage.

비열 살균 기술인 high voltage PEF를 이용하여 당근 주스를 처리하였을 때 당근주스의 살균력과 저장 중 품질 변화를 관찰하였다. 전기장의 세기를 50, 60, 70kV/cm에서 처리 시간을 달리하여 당근주스를 처리한 결과 전기장의 세기가 증가함에 따라 일반 세균과 효모 및 곰팡이 모두 감소하였다. 효모 및 곰팡이는 65 kV/cm, $200{\mu}s$ 처리시 모든 균이 사멸되었고 일반세균은 멸균에까지 이르지는 못하였으나 70 kV/cm $200{\mu}s$ 처리 후 4 log cycle 정도 감소되었다. 고전압 펄스 전기장 처리에 사용되는 펄스 파형인 square wave pulse와 exponential decay pulse가 살균효과에 미치는 차이를 비교하기 위하여 각각 4.25와 6.25의 pH에서 PEF 처리를 하여 실험하였다. 그 결과 square wave pulse를 이용한 PEF의 살균효과가 exponential decay pulse를 이용하였을 때보다 우수하였으며 처리 시간이 길어질수록, 당근주스의 pH가 낮을수록 두 파형 사이의 살균효과는 더 큰 차이를 나타내었다. 온도 및 pH의 병합처리가 PEF의 살균효과에 미치는 영향을 알아보기 위하여 온도 및 pH를 달리하여 55kV/cm, $132{\mu}s$의 조건에서 PEF 처리한 결과 병합 처리시 살균효과가 눈에 띄게 증가하는 것을 관찰할 수 있었다. PEF 처리한 당근주스의 저장 시 품질변화를 관찰한 결과 pH 와 열처리를 PEF와 병합하여 처리한 후 $4^{\circ}C$ 저장한 당근 주스에서만 pH, $^{\circ}Brix$, 산도, 색도 그리고 ${\alpha}-,\;{\beta}-carotenes$함량에 눈에 띄는 차이를 나타나지 않았으며, 28일 동안 균의 생육을 관찰할 수 없었다.

Keywords

References

  1. Ogunlesi AT, Lee CY. Effect of thermal processing on the stereoisomerization of major carotenoids and vitamin A value of carrot. Food Chem. 4: 311-320 (1979) https://doi.org/10.1016/0308-8146(79)90019-0
  2. Panalaks T, Murray YK. Effect of processing on the content of carotenoids isomers in vegetables and peaches. J. Inst. Can. Technol. 3: 145-152 (1970) https://doi.org/10.1016/S0008-3860(70)74310-9
  3. Mertens B, Knorr D. Developments of nonthermal processes for food preservation. Food Technol.-Chicago 46: 124-133 (1992)
  4. Qin B, Pothakamury UR, Vega H, Martin O, Barbosa-Canovas GV, Swanson BG. Food pasteurization using high-intensity pulsed electric fields. Food Technol.-Chicago 49: 55-60 (1995)
  5. Ray B. Control by New Nonthermal Methods. In: Fundamental Food Microbiology. CRC Press, New York, NY, USA. pp. 441- 460 (1996)
  6. Chernomordik LV, Sukharev SI, Popov SV, Pastushenko VF, Sokirko AV, Abidor IG, Chizmadzhev YA. The electrical breakdown of cell and lipid membranes: The similarity of phenomenologies. Biochim. Biophys. Acta 902: 360-373 (1987) https://doi.org/10.1016/0005-2736(87)90204-5
  7. Dimirtrov DS. Electric field-induced breakdown of lipid bilayers and cell membranes: A thin viscoelastic model. J. Membrane Biol. 78: 53-60 (1984) https://doi.org/10.1007/BF01872532
  8. Coster HGL, Zimmerman U. The mechanism of electrical breakdown in the membranes of Valonia utricularis. J. Membrane Biol. 22: 73-90 (1975) https://doi.org/10.1007/BF01868164
  9. Shin JK. Inactivaion of Saccharomyces cereivsiae by high voltage pulsed electric fields. PhD thesis, Yonsei University, Seoul, Korea (2000)
  10. Qin BL, Pothakamury UR, Vega H, Martin O, Barbosa-Canovas GV, Swanson BG. Nonthermal pasteurization of liquid foods using high intensity pulsed electric fields. Crit. Rev. Food Sci. 36: 603-627 (1996) https://doi.org/10.1080/10408399609527741
  11. Vega H, Powers JR, Barbosa-Canovas GV, Swanson BG. Plasmin inactivation with pulsed electric fields. J. Food Sci. 60: 1143- 1148 (1995) https://doi.org/10.1111/j.1365-2621.1995.tb06310.x
  12. Vega H, Powers JR, Martin-Belloso O, Leudecke L, Barbosa- Canovas GV, Swanson BG. Effect of pulsed electric fields on the susceptibility of protein to proteolysis and inactivation of an extra cellular protease from Pseudomonas fluorescens M3/6V. pp. C73- 77. In: International Congress on Engineering and Food. April 13-17, Brighton, UK (1997)
  13. Rogob EA. Electroplasmolysis. p. 86. In: Electrical and Physical Process of Food. Agriculture Production, Moscow, Russia (1988)
  14. Aibara S, Hisaki K, Watanabe K. Effects of high-voltage field treatment on wheat dough and bread-making properties. Cereal Chem. 69: 465-467 (1992)
  15. Chen BH, Peng HY, Chen HE. Changes of carotenoids, color, and vitamin A contents during processing of carrot juice. J. Agr. Food Chem. 43: 1912-1918 (1995) https://doi.org/10.1021/jf00055a029
  16. Zhang Q, Monsalve-Gonzalez A, Oin BL, Barbosa-Canovas GV, Swanson BG. Inactivation of Saccharomyces cerevisiae by square wave and exponential decay pulsed electric field. J. Food Process Eng. 17: 469-478 (1994) https://doi.org/10.1111/j.1745-4530.1994.tb00350.x
  17. Vega-Mercado H, Pothakamury UR, Chang FJ, Barbosa-Canovas GV, Swanson BG. Inactivation of Escherichia coli by combining pH, ionic strength, and pulsed electric field hurdles. Food Res. Int. 29: 117-121 (1996) https://doi.org/10.1016/0963-9969(96)00015-4
  18. Oshima T, Sato K, Terauchi H, Sato M. Physical and chemical modification of high-voltage pulse sterilization. J. Electrostat. 42: 159-166 (1997) https://doi.org/10.1016/S0304-3886(97)00152-6
  19. Jung TB. Nonthermal sterilization of takju by high voltage pulsed electric field. MD thesis. Yonsei University, Seoul, Korea (1996)
  20. Lim SB, Jwa MK. Effect of blanching condition on the quality of carrot juice. J. Korean Soc. Food Sci. Nutr. 25: 680-686 (1996)