Physical Properties of Methyl Cellulose and Hydroxypropylated Methyl Cellulose Films

Methyl cellulose와 hydroxypropylated methyl cellulose 필름의 물성

  • Han, Youn-Jeong (Department of Food Science and Nutrition, The Catholic University of Korea) ;
  • Kim, Suk-Shin (Department of Food Science and Nutrition, The Catholic University of Korea)
  • 한윤정 (가톨릭대학교 식품영양학과) ;
  • 김석신 (가톨릭대학교 식품영양학과)
  • Published : 2007.10.31

Abstract

In this study, we prepared methyl cellulose (MC) and hydroxypropylated methyl cellulose (HPMC) films with polyethylene glycol (PEG) or polyphosphates as elongation enhancing materials, and with lipid layers as moisture barrier materials. We then determined their physical properties and compared the data with target physical properties such as a tensile property of 13.0 MPa, elongation of 130%, and water vapor permeability of $3.47{\times}10^{-2}ng{\cdot}m/m^2{\cdot}s{\cdot}Pa$. The PEG and polyphosphates were required for enhancing elongation, while the coating method seemed better than the emulsion method when applying the lipid layers. With respect to elongation, the MC films were better than the HPMC films.

본 연구는 MC와 HPMC를 기본 소재로 하여 이에 PEG와 복합인산염을 첨가할 경우 필름의 물성과, stearic acid, AMG 및 sucrose fatty acid ester로 구성된 지질소재를 유화법이나 코팅법으로 가하여 필름으로 제조한 후 물성을 비교하고자 하였다. 우선 연구의 목표 물성을 인장강도 13.0MPa, 신장율 130%, 수증기투과도 $3.47{\times}10^{-2}ng{\cdot}m/m^2{\cdot}s{\cdot}Pa$로 설정하였다. 목표 물성과 비교한 결과 MC나 HPMC에 PEG와 복합인산염으로 기재 필름을 제조하고 여기에 지질소재를 coating법으로 첨가할 경우 수증기 차단성만 조금 더 개선하면 목표물성을 달성할 수 있을 것으로 판단되었고 신장률 면에서 HPMC보다 MC가 더 적합한 것으로 생각되었다.

Keywords

References

  1. Greener IK, Fennema O. Barrier properties and surface characteristics of edible, bilayer films. J. Food Sci. 54: 1393-1399 (1989) https://doi.org/10.1111/j.1365-2621.1989.tb05120.x
  2. Park JW, Testin RF, Park HJ, Vergano PJ, Weller CL. Fatty acid concentration effect on tensile strength, elongation, and water vapor permeability of laminated edible films. J. Food Sci. 59: 916-919 (1994) https://doi.org/10.1111/j.1365-2621.1994.tb08157.x
  3. Ayranct E, Tunc S. The effect of fatty acid content on water vapour and carbon dioxide transmissions of cellulose-based films. Food Chem. 72: 231-236 (2001) https://doi.org/10.1016/S0308-8146(00)00227-2
  4. Turhan KN, Sahbaz F. Water vapor permeability, tensile properties and solubility of methylcellulose-based edible films. J. Food Eng. 61: 459-466 (2004) https://doi.org/10.1016/S0260-8774(03)00155-9
  5. Song TH, Kim CJ. Preparation of cellulose-based edible film and its physical characteristics. Korean J. Food Sci. Technol. 28: 1-7 (1996)
  6. Koh HY, Chinnan MS. Characteristics of corn zein and methyl cellulose bilayer edible films according to preparation protocol. Food Sci. Biotechnol. 11: 310-315 (2002)
  7. Song TH, Kim CJ. Effect of calcium addition on physicochemical properties of cellulose-based edible films. Korean J. Food Sci. Technol. 31: 99-105 (1999)
  8. Park HJ, Weller CL, Vergano PJ, Testin RF. Permeability and mechanical properties of cellulose-based edible films. J. Food Sci. 58: 1361-1370 (1993) https://doi.org/10.1111/j.1365-2621.1993.tb06183.x
  9. Shrestha AK, Arcot J, Paterson JL. Edible coating materials-their properies and use in the fortification of rice with folic acid. Food Res. Intl. 36: 921-928 (2003) https://doi.org/10.1016/S0963-9969(03)00101-7
  10. Kim YH, Park HJ, Kim DM, Kim KH. Functional properties of cellulose-based films. Korean J. Food Sci. 26: 133-137 (1994)
  11. Kamper SL, Fennema O. Water vapor permeability of edible bilayer films. J. Food Sci. 49: 1478-1485 (1984) https://doi.org/10.1111/j.1365-2621.1984.tb12825.x
  12. Kamper SL, Fennema O. Water vapor permeability of an edible, fatty acid, bilayer films. J. Food Sci. 49: 1482-1485 (1984) https://doi.org/10.1111/j.1365-2621.1984.tb12826.x
  13. Mutalik V, Manjeshwar LS, Wali A, Sairam M, Raju KVSN, Aminabhavi TM. Thermodynamics/hydrodynamics of aqueous polymer solutions and dynamic mechanical characterization of solid films of chitosan, sodium alginate, guar gum, hydroxy ethyl cellulose and hydroxypropyl methyl cellulose at different temperatures. Carbohyd. Polym. 65: 9-21 (2006) https://doi.org/10.1016/j.carbpol.2005.11.018
  14. Bajdik J, Regdon Jr G, Marek T, Eros I, Süvegh K, Pintye-Hodi K. The effect of the solvent on the film-forming parameters of hydroxypropyl-cellulose. Intl. J. Pharm. 301: 192-198 (2005) https://doi.org/10.1016/j.ijpharm.2005.05.031
  15. Yakimets I, Wellner N, Smith AC, Wilson RH, Farhat I, Mitchell J. Effect of water content on the fracture behaviour of hydroxypropyl cellulose films studied by the essential work of fracture method. Mech. Mater. 39: 500-512 (2007) https://doi.org/10.1016/j.mechmat.2006.08.003
  16. Tarvainen M, Sutinen R, Peltonen S, Mikkonen H, Maunus J, Vaha-Heikkila K, Lehto V, Paronen P. Enhanced film-forming properties for ethyl cellulose and starch acetate using n-alkenyl succinic anhydrides as novel plasticizers. Eur. J. Pharm. Sci. 19: 363-371 (2003) https://doi.org/10.1016/S0928-0987(03)00137-4
  17. KFDA: Food Additives Database. KFDA Homepage (http://fa.kfda. go.kr/Index.html) (2007)
  18. ASTM. Annual Book of ASTM Standards. American Society for Testing and Materials, Philadelphia, PA, USA (1989)
  19. ASTM. Annual Book of ASTM Standards. Destination E96-80 standard Test Methods for Water Vapor Transmission of Materials. American Society for Testing and Materials, Philadelphia, PA, USA (1989)
  20. Gennadios A, Weller CL, Gooding CH. Measurement errors in water vapor permeability of highly permeable, hydrophilic edible films. J. Food Eng. 21: 395-409 (1994) https://doi.org/10.1016/0260-8774(94)90062-0
  21. Han YJ, Roh HJ, Kim SS. Preparation and physical properties of cudlan composite edible films. Korean J. Food Sci. Technol. 39: 158-163 (2007)
  22. Lim MJ, Sim JH, Choi JM, Kim YS. A study on development of eco-friendly wrap using biodegradabke resin K. Korean Ind. Eng. Chem. 16: 800-808 (2005)