Dielectric Properties and a Equivalent Circuit of ZnO-Based Varistor

ZnO 바리스터의 유전특성과 등기회로

  • 노일수 (부경대 공대 전기공학과) ;
  • 강대하 (부경대 공대 전기제어공학부)
  • Published : 2007.12.01

Abstract

In this study a low-signal equivalent circuit based on the Double Schottky Barrier model is proposed for ZnO-based varistor. Since pin-lead inductance and stray capacitance are considered in pin-lead type ZnO varistor these inductance and capacitance could be removed from the experimental dielectric data of the varistor. According to the equivalent circuit simulation results the higher the varistor-voltage of varistor sample the capacitance of dielectric layer is larger, and the capacitances of semiconducting layer and depletion layer are smaller, while the parallel resistances of semiconducting layer and depletion layer are more larger values. Spectra of the dielectric loss factor $tan{\delta}$ show 2 peaks in low frequency and high frequency regions respectively. The low-frequency peak is due to the relaxation by deep donors and the high-frequency peak is due to the relaxation by shallow donors. Above results are well consistent with the theoretical mechanism of ZnO varistor.

Keywords

References

  1. Clarke D. R. 'Varistor ceramics', J. Am. Ceram. Soc., Vol. 82, Issue 3, pp. 484-502, 1999
  2. Tadatsugu Minami, Hirotoshi Sato, Hidehito Nanto and Shinzo Tkata, 'Group III Impurity Doped Zinc Oxide Thin Films Prepared by RF Magnetron Sputtering', Jpn. J. Appl. Phys., Vol. 24, L781-L784, 1985 https://doi.org/10.1143/JJAP.24.781
  3. Lin Feng-Cang, Tkao, Yuji, Shimizu, Yasuhiro, Egashiro, Makoto, 'zinc oxide varistor gas sensors: effect of Bi2O3 content on the H2-sensing properties', J. Am. Ceram. Soc., Vol. 78, Issue 9, pp. 2301-2306, 1995 https://doi.org/10.1111/j.1151-2916.1995.tb08661.x
  4. K. Vanheusden, W. L. Warren, C. H. Seager, D. R Tallant and J. A. Voigt, 'Mechanisms behind green photoluminescence in ZnO phosphor powders', J. Appl. Phys., Vol. 79, Issue 10, pp. 7983-7990. 1996 https://doi.org/10.1063/1.362349
  5. F. Hamdni, A. E. Botchkarev, H. Tang, W. Kim, and H. Morkoc,'Effect of buffer layer and substrate surface polarity on the growth by molecular beam epytaxy of GaN on ZnO', Appl. Phys. Lett., Vol. 71, Issue 21, pp. 3111-3113, 1997 https://doi.org/10.1063/1.120262
  6. D. C. Look, 'Recent advances in ZnO materials and devices', Mater. Sci. Eng. B, Vol. 80, Issue 1-3, pp. 383-387, 2001 https://doi.org/10.1016/S0921-5107(00)00576-6
  7. Kohan A. F., Ceder G. Morgan D. and Van de Walle C. G.,'First principles study of native point defects in ZnO', Phys. Rev. B, Vol. 61, pp. 5019-5027, 2000 https://doi.org/10.1103/PhysRevE.61.5019
  8. A. Sedky, M. Abu-Abdeen and Abdalaziz A. Almulhem, 'Nonlinear I-V characteristics in doped ZnO based-ceramic varistor', Physica B: Condensed Matter, Vol. 388, Issue 1-2, PP. 266-273, 2007 https://doi.org/10.1016/j.physb.2006.04.035
  9. Pike G. E.,'Semiconductor grain-boundary admittance: Theory', Phys. Rev. B, Vol. 33, pp.3274-3276, 1984
  10. Blatter G. and Greuter F.,'Carrier transport through grain boundaries in semiconductors', Phys, Rev. B, Vol. 54, pp. 3952-3966, 1986
  11. D. Femandez-Hevia and J. de Frutos, 'Mort-Schottky behavior of strongly pinned double Schottky barriers and characterization of ceramic varistors', J. Appl, Phys., Vol. 92, pp. 2890-2898, 2002 https://doi.org/10.1063/1.1498968
  12. 向江和郞, 'バリスタの導電機構', エレクトロニク. セラミクス, 89 5月号 バリスタ特輯, pp. 19-25, 1989
  13. David R. Clake,'Varistor Ceramics', J. Am. Ceram. Soc., Vol. 82, No. 3, pp. 485-502, 1999 https://doi.org/10.1111/j.1151-2916.1999.tb01793.x
  14. D. Fernandez-Hevia, A. C. Cballeo, J. de Frutos and J. F. Fernandez,' Dominance of deep over shallow donors and non-Debye response of ZnO-based varistors', J. Europ. Ceram. Soc., Vol. 25, pp.3005-3009, 2005 https://doi.org/10.1016/j.jeurceramsoc.2005.03.176
  15. Lionel. M. Levinson and H. R. Philipp, 'AC properties of metal-oxide varistors', J. Appl. Phys. Vol. 47(3). pp, 1117-1122, March 1976 https://doi.org/10.1063/1.322745