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The Comparison of Singular Value Decomposition
and Spectral Decomposition
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Abstract

The singular value decomposition and the spectral decomposition are the
useful methods in the area of matrix computation for multivariate
techniques such as principal component analysis and multidimensional
scaling. These techniques aim to find a simpler geometric structure for
the data points. The singular value decomposition and the spectral
decomposition are the methods being used in these techniques for this
purpose. In this paper, the singular value decomposition and the spectral
decomposition are compared.
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1. Introduction

The singular value decomposition and spectral decomposition are methods which
are used to find a linear structure of reduced dimension and to give interpretation
of the lower dimensional structure. Good(1969) showed the application of singular
value decomposition of a matrix. Shin(1998) discussed the advantage of the
singular value decomposition from the algebraic point of view. In particular, Choi
and Huh(1996) derived resistant version of singular value decomposition for
principal component analysis. On the other hand Kim and Park(1993) proposed an
efficient algorithm for computing the orthogonal projection matrix for a balanced
mode] using the spectral decomposition.

Multivariate techniques such as principal component analysis, factor analysis,
multidimensional scaling, generalized principal component analysis, etc. are tools to
analyze the multivariate data. Many statisticians (Jackson and Hearne(1975),
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Granadesikan(1977), Chatfield and Collins(1980), Tso(1981)) viewed these
multivariate techniques as exploratory rather than inferential in that they seek to
formulate hypotheses more than to test hypotheses. In this regard, the underlying
theme of these techniques is to find point which would either reduce the
dimensionality or suggest a possible internal relationships among units or variable.

By the singular value decomposition and the spectral decomposition of an nXp
data matrix X, we can get dimensional reduction and find the linear structure in

data reduction techniques. When the number of variable is large, the singular
value decomposition of the data matrix is computationally far more efficient than
the spectral decomposition of the sample covariance matrix.

In Section 2, we compare the singular value decomposition and the spectral
decomposition of a matrix. In Section 3, we compare the way the singular value
decomposition and the spectral decomposition are used in the multivariate
techniques. Finally in Section 4, we discuss our results.

2. The Singular Value decomposition and the Spectral
Decomposition

2.1 The Singular Value Decomposition of Matrix

Let X be a pxy matrix and consider the pxp symmetric matrix XX (or nxn
symmetric matrix X'X). Suppose ay,--,a, are the orthogonal eigenvectors of
XX' and that ay,-++,a; correspond to the k positive eigenvalues A%, ---,)\2,? of

XX'. Then
X=(a,0{ + -+ a,a) ) X = aa} X+ + aaf X (1)

because for j=k+1,-,p, XX'e;=0. Define \b; = X'a;. Then X*Xb; = Alb;.
Thus b, .. b, are the orthonormal eigenvectors of X .¢ correspond to the §k

positive eigenvalues )\f,'",)\i of X'X. The equation (1) is written
X=M\abt ++ \abh 2

and the equation (2) is called the singular value decomposition of X.
The numbers A;, Ay, are the singular values of X and the vectors a;, as -,

by, by, -+, are the right and left singular vectors of X. The singular value

decomposition of a matrix is a way to express a matrix as the sum of matrices
of rank one..
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Suppose M is a pxp real symmetric matrix of rank p. Then the right and left

singular vectors are identical and reduce to eigenvectors. Thus the singular value
decomposition of M is

M= \a,al +--+ )\papa;, , 3

where A, -, A, are eigenvalues of M and a;,'--,a, are eigenvectors of M.

The singular value decomposition of X provides an immediate analysis of the
effect of X regarded as a linear transformation acting on the vectors of Euclidean
n-space and p-space respectively.

We can use the singular value decomposition of X to solve p simultaneous
linear equations Xy=a, where a is given and y is determined. Write
a=fia+--+pBa, and y=mb +-+vb, . Then we obtain the consistency
conditions Bx4+; =0,--,6, =0 and, subject to these conditions, the solutions
M= AT B0 % = A 18, with Yg4 1 s, arbitrary. Thus y= X 'a is a solution

if there is one , and the general solution is y=X ‘a4 (X~ 'X—Dd, where d is
arbitrary.

2.2 The Spectral Decomposition of a Real Symmetric Matrix

Let M be a real symmetric matrix. Let A be an eigenvalue of M and a an
eigenvector associated with A Ma= Aa(a = 0). The subspace S = {a | Ma= la}

is called the subspace associated with A. lLet @, and a, be eigenvectors
associated with distinct eigenvalues A and As , respectively. Then a; and a,

are orthogonal. Hence, for a real symmetric matrix M, the eigensubspaces
associated with distinct eigenvalues are orthogonal.

Suppose M has k distinct eigenvalues A ,,--,A, and the corresponding

eigensubspaces S;,*-+,S;. Then any vector y& R? may be written as
y=y, ++u, (4)

wherey; € Si,i= 1,--:,k. From the equation (4), by the orthogonality of S; , My
and M 2y can be written as,

My =My, + -+ N (5)

My =y, +--+ Xy
Let FEy,---,E. be orthogonal projection matrices on the subspaces 9}, 5}
respectively, so that E y ;= 0(i#). Because the subspaces are orthogonal, clearly
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we have y,=FE y,i=1, ---, k. Substituting the equation (4)
y=Ey++ Ey= (B + -+ E)y.
Thus I, = Ey +:--+ E;. Similarly from the equation (5),
M= M\E, + -+ \E, 6)

and the equation (6) is called the spectral decomposition of the real symmetric
matrix M.

Now if an eigenvalue A of M has multiplicity » dimS,=m and for
orthonormal basis {Al,-'-,/\m} of S; which are eigenvectors corresponding to A

the orthogonal projection E, on S, can be written as E) SPIDVE TS WP\
Hence the equation (6) can be rewritten as

M= f:/\,-a,-aﬁ , (7

i=1

where the A; are p eigenvalues of M and the a,; are orthonormalized
eigenvectors corresponding to the A;. »

From the equations (3) and (7), We can say that the spectral decomposition is a
special case of the singular value decomposition; spectral decomposition exists only
for square non-negative matrix, whereas the singular value decomposition always
exists for the symmetric matrix.

.3. The Singular Value Decomposition the Spectral
Decomposition in Principal Component Analysis and
Multidimensional Scaling

In this chapter, we illustrate and compare the way the singular value
decomposition and the spectral decomposition are used in the principal component
analysis and the multidimensional scaling from the geometric and algebraic point
of view.

The principal component analysis concerns the recognition of lower dimensional
linear subspaces which the multi responses observations may, lie. The basic idea
of the principal component analysis is to describe the dispersion of an array of n
points in p-dimensional space by introductory a new set of orthogonal linear
coordinate so that the sample variances of the given points which respect to these



The Comparison of Singular Value Decomposition 1139
and Spectral Decomposition

derived coordinates are in decreasing order of magnitude. The first principal
component is that the projection of the given points onto it have maximum
variance among all possible linear coordinates; the second principal component has
maximum variance subject to being orthogonal to the first; and so on. We hope
that the first components will account for most of the variation in the original
data so that the effective dimensionality of the data can be reduced.

Suppose X'= [X,--,X,] be a p-dimensional random variable with mean 0 and
covariance matrix E(= bo.¢) A p by 4 dimensional random matrix X

represents multivarite statistical sample of 5 observations on p variables. Denote a
new set variable, Y},---,Y,, which are uncorrelated and whose variances decrease

form first to last. Each Y] is taken to be a linear combination of the X's so that
)fj = alel +"'+ aijp = a;X N

To preserve the distances in grspace, we impose the condition that
azaj = i—:aﬁj =1 . Now, we want to find the first principal component Y; such
k=1

that ¥; =a‘X. Denote the eigenvalues of X by Ay A, and assume that they are
distinct so that A > Ay >---> X, = 0. Then the principal component, @, is the
eigenvector of corresponding to the largest eigenvalue A;. To obtain the second
principal component, Y, = a5X, we have the condition such that a ta,=1 and Y,
should be uncorrelated with Y;. In this case, A, Is the second largest eigenvalue
of 2, and @, is the corresponding eigenvector. Continuing this argument, the jh
principal component is the eigenvector associated with the sgh largest eigenvalue
A; The total variance is try,=X, +~+X, The important of the jh component
in a more parsimonious description of the system is measure by A ,~/ try, .

Let A denote the (pxp) matrix of eigenvectors, where A= (a;,,a,], and Y

denote the (px1) vector of principal components, then Y=A'X. The pxp
covariance matrix of Yis given by

,\1 0--0
R SF-ICW
00 - ,\p

Since var(Y)=A'Y 4, D(\)=A4'Y,A. Since A is an orthogonal matrix with
AA'=T
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Y= AD()A' = Y raal ®

i=1

Note that the rank g of 2, is less than p. From the above, principal component
analysis is related the spectral decomposition of the covariance matrix.
Multidimensional scaling aims to find a configuration in a much smaller number
of dimensions which approximately reproduce the given dissimilarities. Suppose the
data matrix X have the exact-coordinate of  points in p-dimensional Euclidean

space. Let C,x, = X'X, where the term of C is given by

Crs = i xrjxsj'

ji=1
Then the (zxx) matrix of squared Euclidean distance, [ is

d .= squared Euclidean distance between point r and s
=C T CxCp

In multidimensional consider the inverse problem. Suppose we know the distance
but not the co-ordinate. First we find the C matrix.

C == _%_(dzrs—dzr._dz.s_'_ d2),

where d 2, = average term in rth row, d 2‘5 = average term in sth column,

d..?% = overall average squared distances. ;

Next we are factorizing C in the from C =X'X. Since P consists of the
squares of exact Euclidean distances, C is a positive symmetric matrix. Suppose
C has a rank k&, where k<zn. Then C will have Z non-zero eigenvalues which
we arrange in the order of magnitude so that A >, =\ ,>0.

Let {b,—} denote the corresponding eigenvectors of unit length and let B denote
[by,---,b;]. To scale the eigenvectors so that their sum of squares is equal to A,

we set el = VA b, By the Young-Hausehold factorization theorem, a positive

semidefinite matrix can be factorized into the form XX*. Thus
C= XX'= BD()\,)B' 9)

From the equation (9), multidimensional scaling is related to the spectral
decomposition of the co-ordinate C(= X*X).
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By the singular value decomposition, the data matrix X is written

X=X ab! + ..+ padt (10
where A\ |,A,,-+ are the singular values of X, and the aj;a3by,by, - are the

right and left singular vector of X.
From the equations (8) and (9),

XX'= ) a0} + -+ M\aay
X' X = X\b,b} +---+ \b.bi (11

where ay,---,a; and by,---,b; are the eigenvectors of XX' and X'X and \; is the
eigenvalue. From the equations (10) and (11), the square of singular value of X
is the eigenvalue of XX* or X'X), And the right singular vector is the
eigenvector of XX* and the left singular vector is the eigenvector of XX t

Hence, in multivariate techniques such as principal component analysis and
multidimensional scaling, we can find the linear structure by the singular value
decomposition of a data matrix X. If the vectors a;,a,,-+ can be given a physical

meaning then one would expect to find associated physical meanings for by;by,--

respectively, so that it is natural to refer to a; and b, as a conjugate pair of
1
vectors. Since XX'( and X'X) is a real symmetric and b, =); > X'a;, the linear

structure in principal component analysis and multidimensional scaling is ellipsoid
concerned on the origin and using as co-ordinate axes as the principal axes
resulting from the principal component analysis.

On the other hand, since m(XX?)=m(X),m(X'X)=m(X") and m(X'X) is
the dual space of m(XX?"), the linear structure of data is an ellipsoid concerned on
the origin. Let y be the stationary point of that ellipsoid. Then y=(y,, -,y )

where k=1,---,p is the right( or left) singular vectors of data matrix X. The
stationary value of [yl is £, where ¢is a constant and A is a singular value

of X. Hence we find the linear structure of the reduced dimension and give
interpretation of that space by the singular value decomposition of X.

4. Discussion

The singular value decomposition and the spectral decomposition are the useful
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methods in the area of matrix computation for the multivariate reduction
techniques. Through section 2 and section 3, we can find certain advantage using
the singular value decomposition over the spectral decomposition. Firstly, working
directly with the singular value decomposition of X. we can also maintain
firsthand feeling for the data which would have been at best diminished if the
spectral decomposition of XX' were used as instead. From the equations (3) and
(7), we can derive that the spectral decomposition is a special case of the singular
value decomposition. As a practical matter, there are certain advantages in using
singular value decomposition over spectral decomposition. Working with the data
matrix itself clearly involves far less computational effect than working with the
sample covariance matrix or the sample coordinate matrix, and the saving of the
effort becomes more apparent as the number of variable gets large. Moreover,
most importantly, revealing the eigenvectors of XX * and X'X in the single
equation, the duality between XX° and X'X as evidenced in the treatment of
principal component analysis and the multidimensional scaling -becomes more
convincingly illustrated. Therefore, we can  say that the singular value
decomposition is more useful methods over spectral decomposition
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