AN EQUIVALENCE FORM OF THE BRUNN-MINKOWSKI INEQUALITY FOR VOLUME DIFFERENCES

CHANG-JIAN ZHAO* AND WING-SUM CHEUNG**

Abstract. In this paper, we establish an equivalence form of the Brunn-Minkowski inequality for volume differences. As an application, we obtain a general and strengthened form of the dual Kneser-Süss inequality.

1. Introduction

If K and L are convex bodies in \mathbb{R}^n, then there is convex body $K + L$ such that

$$S(K + L, \cdot) = S(K, \cdot) + S(L, \cdot),$$

where $S(K, \cdot)$ denotes the surface area measure of K. This is a Minkowski's existence theorem; see [3] or [9]. The operation $+$ is called Blaschke addition.

Theorem A (The Kneser-Süss inequality [9]). If K and L are convex bodies in \mathbb{R}^n, then

$$V(K + L)^{(n-1)/n} \geq V(K)^{(n-1)/n} + V(L)^{(n-1)/n},$$

with equality if and only if K and L are homothetic.

The volume differences function of convex bodies K and L was defined by Leng [5]:

$$Dv(K, D) = V(K) - V(D), \quad D \subset K.$$

In [5], Leng established the following Brunn-Minkowski inequality for volume differences.
Theorem B. If $K, L,$ and D are convex bodies in \mathbb{R}^n, $D \subset K$, and $D' \subset L$ is a homothetic copy of D, then
\[Dv(K + L, D + D')^{1/n} \geq Dv(K, D)^{1/n} + Dv(L, D')^{1/n} \]
with equality if and only if K and L are homothetic and $(V(K), V(D)) = \mu(V(L), V(D'))$, where μ is a constant.

If $p \geq 1$ and K and L contain the origin in their interiors, a convex body $K +_p L$ can be defined by
\[h(K +_p L, u)^p = h(K, u)^p + h(L, u)^p \]
for $u \in S^{n-1}$. The operation $+_p$ is called the p-Minkowski addition. Firey [2] proved the following inequality.

Theorem C1. If K and L are convex bodies in \mathbb{R}^n containing the origin in their interiors, $p \geq 1$, and $0 \leq i \leq n$, then
\[W_i(K +_p L)^{p/(n-i)} \geq W_i(K)^{p/(n-i)} + W_i(L)^{p/(n-i)} \]
Furthermore, when $p > 1$, the equality holds if and only if K and L are dilates of each other.

Firey's ideas were transformed into a remarkable extension of the Brunn-Minkowski theory, called the Brunn-Minkowski-Firey theory, by Lutwak [6], [7]. Lutwak found the appropriate p-analog $S_p(K, \cdot)$, $p \geq 1$, of the surface area measure of a convex body K in \mathbb{R}^n containing the origin in its interior. In [6], Lutwak generalized Firey's inequality (3). He also generalized Minkowski's existence theorem, deduced the existence of a convex body $K +_p L$ for which
\[S_p(K +_p L, \cdot) = S_p(K, \cdot) + S_p(L, \cdot) \]
when K and L are origin-symmetric convex bodies, and proved the following result.

Theorem C2 (Lutwak's p-surface area measure inequality). If K and L are origin-symmetric convex bodies in \mathbb{R}^n, and $n \neq p \geq 1$, then
\[V(K +_p L)^{(n-p)/n} \geq V(K)^{(n-p)/n} + V(L)^{(n-p)/n}. \]
Furthermore, when $p > 1$, the equality holds if and only if K and L are dilates of each other.

In [8], Lutwak established the following dual Brunn-Minkowksi inequality.

Theorem D. If K, L are star bodies in \mathbb{R}^n, then
\[V(K + L)^{1/n} \leq V(K)^{1/n} + V(L)^{1/n}, \]
with equality if and only if K and L are dilates of each other.

The aim of this paper is to extend Kneser-Süss inequality (Theorem A) to the context of volume differences, which is in turn proved to be equivalent to Leng's result (Theorem B). We then extend Lutwak's p-surface area measure inequality (Theorem C2) to the context of volume differences. Finally, a general
dual Brunn-Minkowski inequality which strengthens Lutwak’s result (Theorem D) is also given.

2. Definitions and preliminaries

The setting of this paper is n-dimensional Euclidean space $\mathbb{R}^n \ (n > 2)$. Let \mathcal{C}^n denote the set of non-empty convex figures (compact, convex subsets) and \mathcal{K}^n denote the subset of \mathcal{C}^n consisting of all convex bodies (compact, convex subsets with non-empty interiors) in \mathbb{R}^n. We reserve the letter u for unit vectors and the letter B for the unit ball centered at the origin. The surface of B is S^{n-1}. We denote by $V(K)$ the n-dimensional volume of a convex body K. Let $h_K : S^{n-1} \to \mathbb{R}$ denote the support function of $K \in \mathcal{K}^n$, i.e., $h_K(u) = \text{Max}\{u \cdot x : x \in K\}, u \in S^{n-1}$, where $u \cdot x$ denotes the usual inner product of u and x in \mathbb{R}^n.

Associated with a compact subset K of \mathbb{R}^n, which is star-shaped with respect to the origin, is its radial function $\rho(K, \cdot) : S^{n-1} \to \mathbb{R}$, defined for $u \in S^{n-1}$, by $\rho(K, u) = \text{Max}\{\lambda \geq 0 : \lambda u \in K\}$. If $\rho(K, \cdot)$ is positive and continuous, K will be called a star body. Let φ^n denote the set of star bodies in \mathbb{R}^n.

Let δ denote the Hausdorff metric on \mathcal{K}^n; i.e., for $K, L \in \mathcal{K}^n$, $\delta(K, L) = |h_K - h_L|_{\infty}$, where $| \cdot |_{\infty}$ denotes the sup-norm on the space of continuous functions $C(S^{n-1})$ on S^{n-1}.

2.1. Mixed volume and dual mixed volume

If $K_i \in \mathcal{K}^n \ (i = 1, 2, \ldots, r)$ and $\lambda_i \ (i = 1, 2, \ldots, r)$ are nonnegative real numbers, then of fundamental importance is the fact that the volume of $\sum_{i=1}^r \lambda_i K_i$ is a homogeneous polynomial in λ_i given by

$$V(\sum_{i_1, \ldots, i_n}^r \lambda_i K_i) = \sum_{i_1, \ldots, i_n} \lambda_{i_1} \cdots \lambda_{i_n} V(K_{i_1} \cdots K_{i_n}),$$

where the sum is taken over all n-tuples (i_1, \ldots, i_n) of positive integers not exceeding r. The coefficient $V(K_{i_1} \cdots K_{i_n})$, which is called the mixed volume of K_{i_1}, \ldots, K_{i_n}, depends only on the bodies K_{i_1}, \ldots, K_{i_n}, and is uniquely determined by (6). If $K_1 = \cdots = K_{n-i} = K$ and $K_{n-i+1} = \cdots = K_n = L$, then the mixed volume $V(K_1 \cdots K_n)$ is usually written as $V_i(K, L)$.

From (6), we easily get: If $K, L, M \in \mathcal{K}^n$ and $\alpha, \mu \geq 0$, then

$$V_i(M, \alpha K + \mu L) = \alpha V_i(M, K) + \mu V_i(M, L).$$

Further, from (6) it follows immediately that

$$\lim_{\varepsilon \to 0} V(K + \varepsilon L) - V(K) \varepsilon = n V_i(K, L).$$

If $K_1, \ldots, K_n \in \varphi^n$, then the dual mixed volume of K_1, \ldots, K_n is written as $\tilde{V}(K_1, \ldots, K_n)$. If $K_1 = \cdots = K_{n-i} = K$, and $K_{n-i+1} = \cdots = K_n = L$, then $\tilde{V}(K_1, \ldots, K_n)$ is written as $\tilde{V}_i(K, L)$. If $L = B$, the dual mixed volume
\(\tilde{V}(K, B) \) is written as \(\tilde{W}_i(K) \) and is called the \textit{i-th dual Quermassintegral} of \(K \).

2.2. The Blaschke addition and the radial Blaschke addition

If \(K, L \) and \(\alpha, \mu \geq 0 \), then the Theorem of Fenchel-Jessen-Alexandrov tells that there exists a convex body, unique up to translation, which we denote by \(\alpha \cdot K + \mu \cdot L \), such that

\[
S(\alpha \cdot K + \mu \cdot L, \cdot) = \alpha S(K, \cdot) + \mu S(L, \cdot).
\]

This addition is called \textit{Blaschke addition}.

The following result will be used later: If \(K, L, M \in K^n \) and \(\alpha, \mu \geq 0 \), then

\[
V_1(\alpha K + \mu L, M) = \alpha V_1(K, M) + \mu V_1(L, M).
\]

As an aside, we note that corresponding to (8) one has for \(K, L \in K^n \),

\[
\lim_{\varepsilon \to 0} \frac{V(L + \varepsilon K) - V(L)}{\varepsilon} = \frac{n}{n-1} V_1(K, L).
\]

See Goikkman [4].

If \(K, L \in \varphi^n \) and \(\alpha, \mu \geq 0 \), then the radial Blaschke linear combination, \(\alpha \cdot K + \mu \cdot L \), is the star body whose radial function is given by

\[
\rho(\alpha \cdot K + \mu \cdot L, \cdot)^{n-1} = \alpha \rho(K, \cdot)^{n-1} + \mu \rho(L, \cdot)^{n-1}.
\]

We shall call the addition \textit{radial Blaschke addition}.

3. Lemmas

The following well-known results will be required to prove our main theorems.

Lemma 1 (Bellman's inequality). \(\text{Let } a = \{a_1, \ldots, a_n\} \text{ and } b = \{b_1, \ldots, b_n\} \text{ be two sequences of positive real numbers and } p > 1 \text{ such that } a_i^p - \sum_{i=2}^{n} a_i^p > 0 \text{ and } b_i^p - \sum_{i=2}^{n} b_i^p > 0 \text{, then}

\[
\left(\frac{a_i^p - \sum_{i=2}^{n} a_i^p}{a_i^p} \right)^{1/p} + \left(\frac{b_i^p - \sum_{i=2}^{n} b_i^p}{b_i^p} \right)^{1/p} \leq \left(\frac{(a_1 + b_1)^p - \sum_{i=2}^{n} (a_i + b_i)^p}{(a_1 + b_1)^p} \right)^{1/p}
\]

with equality if and only if \(a = vb \) where \(v \) is a constant.

Lemma 2 (Minkowski's inequality for integrals). \(\text{If } f_j \geq 0 (j = 1, \ldots, m) \), \(p > 1 \), then

\[
\left(\int_{S^{n-1}} \left(\sum_{j=1}^{m} f_j(u) \right)^p dS(u) \right)^{1/p} \leq \sum_{j=1}^{m} \left(\int_{S^{n-1}} f_j^p(u) dS(u) \right)^{1/p},
\]

with equality if and only if \(f_j \) are effectively proportional.

This inequality is reversed if \(0 < p < 1 \) or \(p < 0 \).
Lemma 3. If K, L, and D are convex bodies in \mathbb{R}^n, $D \subset K$, and $D' \subset L$ is a homothetic copy of D, then

$$Dv(K+L, D+D')^{(n-1)/n} \geq Dv(K, D)^{(n-1)/n} + Dv(L, D')^{(n-1)/n}$$

with equality if and only if K and L are homothetic and $(V(K), V(D)) = \mu(V(L), V(D'))$, where μ is a constant.

Proof. We will prove the lemma using the method of Leng [5].

Applying the Kneser-Süss inequality (1), we obtain

$$V(K+L)^{(n-1)/n} \geq V(K)^{(n-1)/n} + V(L)^{(n-1)/n}$$

with equality if and only if K and L are homothetic, and

$$V(D+D')^{(n-1)/n} = V(D)^{(n-1)/n} + V(D')^{(n-1)/n}.$$

From (15) and (16), we obtain

$$Dv(K+L, D+D') \geq [V(K)^{(n-1)/n} + V(L)^{(n-1)/n}]^{n/(n-1)}$$

$$- [V(D)^{(n-1)/n} + V(D')^{(n-1)/n}]^{n/(n-1)}.$$

From (17) and applying inequality (12), we have

$$Dv(K+L, D+D')^{(n-1)/n} \geq (V(K) - V(D))^{(n-1)/n} + (V(L) - V(D'))^{(n-1)/n},$$

with equality if and only if K and L are homothetic and $(V(K), V(D)) = \mu(V(L), V(D'))$, where μ is a constant.

Remark 1. In the special case where D and D' are single points, inequality (14) becomes the classical Kneser-Süss Inequality.

4. Main results

We next observe that Lemma 3 is actually equivalent to Leng’s result (Theorem B).

Theorem 1. If K, L, and D are convex bodies in \mathbb{R}^n, $D \subset K$, and $D' \subset L$ is a homothetic copy of D, then

$$Dv(K+L, D+D')^{(n-1)/n} \geq Dv(K, D)^{(n-1)/n} + Dv(L, D')^{(n-1)/n}$$

$$\Leftrightarrow Dv(K+L, D+D')^{1/n} \geq Dv(K, D)^{1/n} + Dv(L, D')^{1/n},$$

where the conditions of equality are also equivalent.

Proof. (\Rightarrow) Suppose that

$$Dv(K+L, D+D')^{(n-1)/n} \geq Dv(K, D)^{(n-1)/n} + Dv(L, D')^{(n-1)/n},$$

with equality if and only if K and L are homothetic and $(V(K), V(D)) = \mu(V(L), V(D'))$, where μ is a constant.
From (10), we obtain
\[
\frac{n}{n-1} (V_1(K, L) - V_1(D, D'))
\]
\[
= \lim_{\varepsilon \to 0} \frac{Dv(L + \varepsilon K, D' + \varepsilon D) + Dv(D', L)}{\varepsilon}
\]
\[
\geq \lim_{\varepsilon \to 0} \frac{(Dv(L, D'))^{(n-1)/n} + \varepsilon Dv(K, D)^{(n-1)/n} + Dv(D', L)}{\varepsilon},
\]
with equality if and only if \(K\) and \(L\) are homothetic and \((V(K), V(D)) = \mu(V(L), V(D'))\), where \(\mu\) is a constant.

On the other hand, from (19) and in view of L'Hôpital's rule, we have
\[
V_1(K, L) - V_1(D, D')
\]
\[
\geq \lim_{\varepsilon \to 0} (Dv(L, D')^{(n-1)/n} + \varepsilon Dv(K, D)^{(n-1)/n})^{1/(n-1)} \geq 0
\]
\[
= Dv(L, D')^{1/n} Dv(K, D)^{(n-1)/n}.
\]

Suppose that \(M, N \in \mathcal{K}^n\) and \(N \subset M\), from (7) and (20), it follows that
\[
V_1(M, K + L) - V_1(N, D + D')
\]
\[
= (V_1(M, K) - V_1(N, D)) + (V_1(M, L) - V_1(N, D'))
\]
\[
\geq (Dv(K, D)^{1/n} + Dv(L, D')^{1/n}) Dv(M, N)^{(n-1)/n}.
\]
If we take \(M = K + L\) and \(N = D + D'\) in (21), in view of \(V(K, \ldots, K) = V(K)\), we have
\[
Dv(K + L, D + D')^{1/n} \geq Dv(K, D)^{1/n} + Dv(K, D)^{1/n},
\]
with equality if and only if \(K\) and \(L\) are homothetic and \((V(K), V(D)) = \mu(V(L), V(D'))\), where \(\mu\) is a constant.

\((\Leftarrow)\) Suppose that
\[
Dv(K + L, D + D')^{1/n} \geq Dv(K, D)^{1/n} + Dv(L, D')^{1/n},
\]
with equality if and only if \(K\) and \(L\) are homothetic and \((V(K), V(D)) = \mu(V(L), V(D'))\), where \(\mu\) is a constant.

From (8), we have
\[
\frac{n}{n-1} (V_1(K, L) - V_1(D, D'))
\]
\[
= \lim_{\varepsilon \to 0} \frac{Dv(K + \varepsilon L, D + \varepsilon D') + Dv(D, K)}{\varepsilon}
\]
\[
\geq \lim_{\varepsilon \to 0} \frac{(Dv(K, D)^{1/n} + \varepsilon Dv(L, D')^{1/n})^{n} + Dv(D, K)}{\varepsilon},
\]
with equality if and only if \(K\) and \(L\) are homothetic and \((V(K), V(D)) = \mu(V(L), V(D'))\), where \(\mu\) is a constant.
On the other hand, from (22) and in view of L'Hôpital's rule, we have
\[V_1(K, L) - V_1(D, D') \]
\[
\geq \lim_{\varepsilon \to 0} (Dv(K, D))^{1/n} + \varepsilon Dv(L, D')^{1/n} n^{-1} Dv(L, D')^{1/n}
\]
\[
= Dv(K, D)^{(n-1)/n} Dv(L, D')^{1/n}.
\]

From (9) and (23), for any \(M, N \in \mathcal{K}^n \) and \(N \subset M \), we have
\[V_1(K \oplus L, M) - V_1(D \oplus D', N) \]
\[
= (V_1(K, M) - V_1(D, N)) + (V_1(L, M) - V_1(D', N))
\]
\[
\geq (Dv(K, D)^{(n-1)/n} + Dv(L, D')^{(n-1)/n}) Dv(M, N)^{1/n}.
\]

If we take \(M = K \oplus L \) and \(N = D \oplus D' \) in (24), and in view of \(V(K, \ldots, K) = V(K) \), we obtain inequality (14). \(\square \)

Remark 2. In the special case where \(D \) and \(D' \) are single points, Theorem 1 gives the following important result.

Corollary 1. The Knörrer-Süss inequality is equivalent to the Brunn-Minkowski inequality, namely, for \(K, L \in \mathcal{K}^n \),
\[V(K \oplus L)^{(n-1)/n} \geq V(K)^{(n-1)/n} + V(L)^{(n-1)/n} \]
\[
\Leftrightarrow V(K + L)^{1/n} \geq V(K)^{1/n} + V(L)^{1/n},
\]
with equality if and only if \(K \) and \(L \) are homothetic.

Similarly, from the Lutwak's \(p \)-surface area measure inequality (4) and the Bellman's inequality, we can get the following result which is a general form of (4).

Theorem 2. If \(K, L, \) and \(D \) are origin-symmetric convex bodies in \(\mathbb{R}^n, D \subset K, \) and \(D' \subset L \) is a homothetic copy of \(D \), then for \(n \neq p \geq 1 \),
\[Dv(K \oplus_p L, D \oplus_p D')^{(n-p)/n} \geq Dv(K, D)^{(n-p)/n} + Dv(L, D')^{(n-p)/n}. \]

Furthermore, when \(p > 1 \), the equality holds if and only if \(K \) and \(L \) are dilates of each other and \((V(K), V(D)) = \mu (V(L), V(D')) \), where \(\mu \) is a constant.

Remark 3. Note that the Knörrer-Süss inequality (14) for volume differences corresponds to the case \(p = 1 \) in (25). On the other hand, if \(D \) and \(D' \) are single points, (25) reduces to the classical Knörrer-Süss inequality.

Finally, the following is a general and strengthened form of Lutwak's dual Brunn-Minkowski inequality.

Theorem 3. If \(K, L \in \varphi^n, \alpha \in [0, 1], \) then for \(i < 1 \),
\[W_i(K \oplus L)^{(n-1)/(n-i)} \]
\[
\leq \tilde{W}_i(\alpha K \oplus(1 - \alpha)L)^{(n-1)/(n-i)} + \tilde{W}_i((1 - \alpha)K \oplus \alpha L)^{(n-1)/(n-i)}
\]
\[
\leq \tilde{W}_i(K)^{(n-1)/(n-i)} + \tilde{W}_i(L)^{(n-1)/(n-i)},
\]
with equality if and only if K and L are dilates of each other.

These inequalities are reversed for $i > n$ or $1 < i < n$.

Proof. Noting that $\tilde{W}_i(K) = \int_{S^{n-1}} \rho(K)^{n-i} dS(u)$, and from (11), (13), we have for $i < 1$,

$$\tilde{W}_i(K^\alpha + L)^{(n-1)/(n-i)}$$

$$= \left(\frac{1}{n} \int_{S^{n-1}} \rho(K^\alpha + L, u)^{n-i} dS(u) \right)^{(n-1)/(n-i)}$$

$$= \left(\frac{1}{n} \int_{S^{n-1}} (\rho(K, u)^{n-1} + \rho(L, u)^{n-1})^{(n-i)/(n-1)} dS(u) \right)^{(n-1)/(n-i)}$$

$$\leq \left(\frac{1}{n} \int_{S^{n-1}} (\rho(K, u)^{n-1} + (1 - \alpha) \rho(L, u)^{n-1})^{(n-i)/(n-1)} dS(u) \right)^{(n-1)/(n-i)}$$

$$+ \left(\frac{1}{n} \int_{S^{n-1}} ((1 - \alpha) \rho(K, u)^{n-1} + \alpha \rho(L, u)^{n-1})^{(n-i)/(n-1)} dS(u) \right)^{(n-1)/(n-i)}$$

$$= \left(\frac{1}{n} \int_{S^{n-1}} (\rho(\alpha \cdot K^\alpha + (1 - \alpha) \cdot L, u)^{n-i} dS(u) \right)^{(n-1)/(n-i)}$$

$$+ \left(\frac{1}{n} \int_{S^{n-1}} (\rho((1 - \alpha) \cdot K^\alpha + \alpha \cdot L, u)^{n-i} dS(u) \right)^{(n-1)/(n-i)}$$

$$= \tilde{W}_i(\alpha \cdot K^\alpha + (1 - \alpha) \cdot L)^{(n-1)/(n-i)} + \tilde{W}_i((1 - \alpha) \cdot K^\alpha + \alpha \cdot L)^{(n-1)/(n-i)}.$$

On the other hand, for $i < 1$,

$$\tilde{W}_i(\alpha \cdot K^\alpha + (1 - \alpha) \cdot L)^{(n-1)/(n-i)}$$

$$= \left(\frac{1}{n} \int_{S^{n-1}} \rho(\alpha \cdot K^\alpha + (1 - \alpha) L)^{n-i} dS(u) \right)^{(n-1)/(n-i)}$$

$$\leq \alpha \left(\frac{1}{n} \int_{S^{n-1}} \rho(K, u)^{n-i} dS(u) \right)^{(n-1)/(n-i)}$$

$$+ (1 - \alpha) \left(\frac{1}{n} \int_{S^{n-1}} \rho(L, u)^{n-i} dS(u) \right)^{(n-1)/(n-i)}$$

$$= \alpha \tilde{W}_i(K)^{(n-1)/(n-i)} + (1 - \alpha) \tilde{W}_i(L)^{(n-1)/(n-i)}.$$

Similarly, we get

$$\tilde{W}_i((1 - \alpha) \cdot K^\alpha + \alpha \cdot L)^{(n-1)/(n-i)} \leq (1 - \alpha) \tilde{W}_i(K)^{(n-1)/(n-i)} + \alpha \tilde{W}_i(L)^{(n-1)/(n-i)}.$$

Hence,

$$\tilde{W}_i(\alpha \cdot K^\alpha + (1 - \alpha) \cdot L)^{(n-1)/(n-i)} + \tilde{W}_i((1 - \alpha) \cdot K^\alpha \cdot L)^{(n-1)/(n-i)}$$

$$\leq \tilde{W}_i(K)^{(n-1)/(n-i)} + \tilde{W}_i(L)^{(n-1)/(n-i)},$$

with equality if and only if K and L are dilates of each other.
The cases of $i > n$ and $1 < i < n$ are obtained analogously.

Remark 4. Taking $i = 0$, inequality (26) becomes the following strengthened form of the dual Kneser-Süss inequality.

Corollary 2. If $K, L \in \varphi^n, \alpha \in [0, 1]$, then

\[
V(K + \alpha L)^{(n-1)/n} \leq V((\alpha K + (1 - \alpha) L)^{(n-1)/n} + V((1 - \alpha) K + \alpha L)^{(n-1)/n} \\
\leq V(K)^{(n-1)/n} + V(L)^{(n-1)/n},
\]

with equality if and only if K and L are dilates of each other.

References

CHANG-JIAN ZHAO
DEPARTMENT OF INFORMATION AND MATHEMATICS SCIENCES
DEPARTMENT OF SCIENCE
CHINA JILIAN UNIVERSITY
HANGZHOU 310018, P. R. CHINA
E-mail address: chjzhao516@yahoo.com.cn chjzhao@163.com chjzhao@cjlu.edu.cn

WING-SUM CHEUNG
DEPARTMENT OF MATHEMATICS
THE UNIVERSITY OF HONG KONG
POKFULAM ROAD, HONG KONG
E-mail address: wscheung@hku.hk