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A DIFFERENCE EQUATION FOR MULTIPLE KRAVCHUK
POLYNOMIALS

DonG WON LEE

ABSTRACT. Let {K ff V) (2)} be a multiple Kravchuk polynomial with re-
spect to r discrete Kravchuk weights. We first find a lowering operator for
multiple Kravchuk polynomials { K ffﬂv) (z)} in which the orthogonalizing
weights are not involved. Combining the lowering operator and the rais-
ing operator by Rodrigues’ formula, we find a (r + 1)-th order difference

equation which has the multiple Kravchuk polynomials {Kéﬁ;N)(x)} as

solutions. Lastly we give an explicit difference equation for {K,(f ;N)(:v)}
for the case of r = 2.

1. Introduction

The Kravchuk polynomial {K")(z)} (0 < p <1, N € N) is a sequence of
polynomials such that deg(& ™ ) =n and

N .
N : _ 0 if j=01,....n-1
1.1 K(PaN) KY(—k); k 1-— N k: y 4y )
) kzzo (k> R = p) # 0 otherwise,

where (a); = (a)(a+1)---(a+j~—1) is the Pochhammer symbol with (a)o = 1.
With the discrete measure p given by

N
e =3 () ) - oy ate b,

k=0

where §(z) is the Dirac delta function, we may express the summation in (1.1)
as an integration

o N
[ ReV@ 0t = T () KOV R @

- k=0
so that (1.1) actually means the orthogonality of the Kravchuk polynomials.
Received April 13, 2006.
2000 Mathematics Subject Classification. 33C45, 39A13, 42C05.

Key words and phrases. multiple orthogonal polynomials, Kravchuk polynomials, differ-
ence equation, rodrigues’ formula.

©2007 The Korean Mathematical Society
1429



1430 DONG WON LEE

The Kravchuk polynomial was first introduced in [11] and after that it has
been treated by many authors. We refer, in particular, to [13, 16] for explicit
formula and many properties of Kravchuk polynomials. One of the most impor-
tant properties is that each K,(,” V) satisfies a second order difference equation

Np T n
AVy + { — — Ay = ———y,
sAVY (1—p 1—p> v l—py

where A and V are the forward and the backward difference operators defined
by

Af(z) = f(z+1) - f(=)
and

V)= f(z) - flz-1).

The multiple orthogonal polynomials were developed in Padé approximation
for a long time ago. See [1, 7, 8, 14, 19] and references therein. Recently many
papers have been published in multiple orthogonal polynomials as a general-
ization of ordinary orthogonal polynomials ([2]-[6], [9]-{10], [12], [15], {17]-{18]).
In [5], the authors investigated the properties of several multiple orthogonal
polynomials of discrete variables by extending the classical orthogonal polyno-
mials of discrete variables. In particular, they defined the multiple Kravchuk
polynomials as follows:

Let r € N, = (p1,p2,.--,0r), and @ = (n1,ns,...,n,) be a multi-index
with {n| = +n2 4+ - +n,. Consider r discrete Kravchuk measures p; given
by

T (N
pi(z) =Y (k)pf(l —p)NFé(z—k), i=1,2,...,r
k=0
It is well known that if 0 < p; < 1 and p; # p; for i # j, then there exists a
multi-indexed sequence { K falp"N) (x)} of polynomials, called a multiple Kravchuk
polynomial, such that

deg(KF™) = In|

and
/K;W)(x)(—x)kdm(x) =0, 0<k<m-—-1, i=12,...,r

In this case, Kr(.lﬁ *N) can be written by

p,N) (z) = H P (=N Iz + 1)1“](\]]:7 -z+1)

r

<11 [(%)“Vm (1%?)] Tz 1 1)1(“](\7N_—|717)|!— 2+ 1)

i=1




A DIFFERENCE EQUATION FOR MULTIPLE KRAVCHUK POLYNOMIALS 1431

where I'(x) is the gamma function. In particular, if » = 2, then

K(Pl ,p2;N) (CL‘)

(n1,n2)

nitng Jj k i—k
o —n1 (—n2)j—s (1 1 (—z);
= PP s Z Z i k)! <—> (') (—N);

s o J yat D2

When r = 2, Van Assche [18] found difference equations having the multiple
Charlier and the multiple Meixner polynomials as solutions. But until now
there is no difference equation to have multiple Kravchuk’s polynomials and
multiple Hahn’s polynomials as solutions even though they are in the same
family of discrete classical multiple orthogonal polynomials. )

In this paper, we first find a lowering operator for Kff ") in which the
orthogonalizing weights are not involved. Combining the lowering operator
and the raising operator by Rodrigues’ formula, we find a (r + 1)-th order

difference equation which has the multiple Kravchuk polynomial {K ,(f ;N)(x)}

as solutions. Lastly we give an explicit difference equation for {K éﬁ;N) (2)} for
the case of r = 2.

2. Main results
For multiple Kravchuk polynomials { K Sf ;N)(a:)}, we define weights by

Nipf(1—p)" ¢ . _
ety it £=0,1,...,N

Pi
0 otherwise

for i = 1,2,...,7. Throughout the paper we assume that 0 < p; < 1 and
p; # p; for i # j. Then for any polynomial ¢ and v,

[ avidta Zw)w WM (@).

By the summation by parts with the properties W,gN ) (-1) = W,va) (N+1) =0,
it is easy to see that

N
ZM W(@)WN (2) = = 3 ¢(@)Vp @)W ().
=0

Let L,(,N)[-] be a difference operator defined by

(2.2) LMyl = 1 - p)zVy + [(N + Dp — zly.
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From the Rodrigues formula (see [5])

(N +1)pi(1 -
Wi ()

Py (WM @K™ @)
=~KPN (@), i=12,...,r,

where e; = (0,0,...,1,...,0) is the i-th standard unit vector, we obtain a
raising operator

ngi\f) [K?N ] K(p N+1)

n+e; ?

=1,2,...,r
Then the formal adjoint L7, x,[] of L,(DN)[-] is given by

?p,N)[y] =—(1-pAzy+[(N+Dp—=zly

and it can be easily seen that for any polynomial ¢ and 1,

ZL“V) [8l(@)¢ ()W () qu(x )Ly, iy [ Wi (2).

Now we need a lemma which can be proved by simple calculations.

Lemma 2.1. Let W,S,N ) be the weights for Kravchuk polynomials as in (2.1).
Then we have

(a) A(—z)r = —k(—2)r—1;

(b) Alz(—z)p_1] = k(—2)r—1 — (k — 1)2(~2)5_2;
(€ (—z—1)p_1 = (~2= )k 1= (k= 1)(=2)k-2;
@ WM (@~ 1) = i Wi (@)

(N) N+1), .
(e) VWp; ' (z) = (1 — ZN_H)p_(lip_i))ngi (),

) Wi V(@) = Wi (@)

(@) V[(~2)e WV (2)]
_( Npiz= . (k=Dz (N) (.
(Npiu_p,-)( e _2)W (2);

() Alz(-2)e1 Wy V(@) = B2 (), Wi ()

(k= DV —k+ D,
1-pi

(—2)k— e WV V(z).



A DIFFERENCE EQUATION FOR MULTIPLE KRAVCHUK POLYNOMIALS 1433

Proof. We prove only (a), (g) and (h) because all the others can be proved
similarly. From the definition of the forward difference operator, we have

Al=z) = (—z = D — (—2)
=(—z - D)(~z)(~z+1) - (~z +k—2)
—(-z)(-xz+1)--(—x+k-1)
=[(—z-1)~(—z+k-D)(~2)(~z+ 1) (~z+k~2)
= —k(~2)r—

which implies (a).
The assertion (g) follows from

V(=) WD (2)]
=(—z+ D1 VWD (@) + V(—2)m WV (2)

Npi—ﬂ,'

{(Conr # - Dma s i) s

—(k—1)(-z+ 1)k_2%} WM ()

= Npi—z (k — Dz
- (o=t o - S o ) WD )

From the definition of the forward difference operator, we have

Ala(=2)ea WIN D (@)] = Ale(=2)ea W ()

+ @+ D=2 = D AW D ().
Since

(z+ DAWNV(z) = (e + YW V(@ +1) - (@ + YWD (2)

b:

- (p~__~i(]\; :;_ D 1+ a:)) WN=1)(g)
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we have by Lemma 2.1 (b) and (c),
Alz(—z)e—1 WN ) (z)]
= [k(—2)p-1 — (k - 1)2(—x)k_2]WISfV—1)(x)

Np; —1— _
2 T e WD (g)
1 —_n- pi
(2.3) pi

Np; —1- _
- ('“* pl—_p—x) () W'V (a)

—(k-1) (k -1+ Np_;:i;_x) (—-’If)k—2WZS,~N_1)($)'
Substituting the relation z(—z)r_2 = —(—z)r—1 + (k — 2)(—z)z_2 into the
equation (2.3), we prove (h). m|

Theorem 2.2. For the multiple Kravchuk polynomial {K éﬁ;N) (2)} we have
(2.4) AKFM (@) =3 n, kPN (z),

i=1
Proof. By Lemma 2.1 (g), we have for i =1,2,...,r,

N N
> AKTV @)~} W (@) = - 3 KFN @) V(- WD ()]

=0 z=0

N
==Y K@M (@)yp(z)WN (z),

=0
where N i
— b= T Nk

is a polynomial of degree < k + 1. Hence, we obtain by the orthogonality

N
> AKPV @) () WN V(@) =0, 0<k<n;-2

=0

Let V be a space of polynomials defined by

N
V={¢|deg(g)=Ini~1 and I ¢(e)(-a)WND(z)=0,

z=0

0<k<mi—2 i=1,2,...,r}.
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Then clearly AK (FN) ¢ v and the dimension of V is r. Since
Zkgp’ﬁl ) WN V(@) =0, 0<k<n;—2, i=12,...,m
=0

we prove K r(ﬂf_;]:l‘l) € V. By the same process we obtain that K ff_;:i_l) eV for
1=1,2,...,r. Assume now that

25) KN (@) + kPN () 4 4 d KPV V() = 0,

n—egz

where d;’s (i = 1,2,...,r) are constants. Multiplying (2.5) by (—Z)n,—1
W,S,iv—l)(m) and then taking summations, we obtain

Zd ZK"’*” V(@) (~2)m 1 WD (@) = 0.

Since the multi-index is normal (see [5] for the definition),

N . .
oA 0 if i#k
E K(P,N 1) —2), ”r(N 1)
~ n—e; (.’L‘)( .'ﬂ) k—1 ( ) 75 0 if i<k

so that dp = 0 for £ = 1,2,...,7. Hence, {K(p’N 1)(w) _, is linearly in-

dependent so that AK 7(7’? ) can be represented as a linear combination of
{EPNY (1)}, Let
(2.6) AKPN (2) = Zd KPN(2),

where d;’s are constants. By the summation by parts and Lemma 2.1(g), we
have

N
ST AKPN (@) (~2)n, WV ()

z=0

N
= - Y KN (@) V[(~2)n -1 WD (@)]

@2.7) =
(FN) Npr —x (N)
;OK @) F =y T Wi @)
+ e ZK(p’N)(x) (—2 + V)2 WM ().

Np =
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By the orthogonality of {K ?N) (x)} with respect to W,fiN ), the last summation
of the right hand side in the equation (2.7) becomes zero. By the orthogonality
again the right hand side of (2.7) becomes

N

5 Npk—CL'
- KPN) () P —2)p 1 W (2
N

1 (-'N) N
= — E K _.p’ T =T )n,; — ‘[ (N} x
Npk(]' _pk) z=0 " ( )x( ) v P ( )

1 N

=~ T 2 K @ eV - WD)
=0

N
1 _
- =Y K%Y (@) (—2)n, WD (@),
Dr =0

i

Using the raising operator L( )[ -] and the symmetric property with the for-
mal adjoint Ly, yll, we have

N
Y KFM (@) () ny 1 WD ()

=0

N
= = > LK V) (~2)n, s WD ()

(28) = _ZKSJZC Y (p;c N- 1)[( x)nk—lwgi\r—l)(m)]

N
(1=p6) Y KLV (@) Al (=) ny 1 WD ()]

ZK(pN 1) (z)(Npy, — IL')(““')nk“lWISIiV—I)(z)'

€k
=0

By a simple calculation with Lemma 2.1(h), we have

(L= pR)A(=2)n, AW (@)] = (Np — 2)(~2)p 1 WS D ()

= (=P (=) —1 = (nk = (N = np + Vpp(—), —2) WV V().
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Hence, we have by the orthogonality and the equation (2.8),

ZKS’N V(@) {1 - pe)Afe(=2), WS (2)]
~ (N~ 2) (=) W (@) |

= — npi Z KN () (=2) . W ()

— (e = 1)(N —ni +1) kaK(”N V(@) (~2)n L2 WIND(z)
=0

:—nkkaK(ch 1> a:) ) k—IWIS,ZV_l)(-'E)
from which we have

N
3" AP (@) (<) WV ()

= ny ZK“’N 1) )nk—lw,g,]cv_l)(x)-

Note that

Zd ZK{Z V(@) (~2)ng 1 WN V()

i=1 =0

= deKn”’Je\; V(@) (=) ny -1 WN D (z).

z=0

1437

Multiplying (2.6) by (-m)n,c_lw,ﬁiv‘l) (z) and then taking summations on both

sides, we obtain

nkZKffiil &)y W ()
= d ZKffiil )yt WD) ()

which implies dj, = ny, for k =1,2,...,r
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In particular if r = 2, the lowering equation (2.4) becomes

AK(PI p2;N) (.’II) = an(Pl p2;N—1) (:I:) + n2K(P1 wp2; N—1) (.’L‘)

(n1,n9) (ni—1,n2) (n1,n2—1)

Theorem 2.3. The multiple Kravchuk polynomial {K ?N) (x)} satisfies a dif-
ference equation

L§)11V+r—2)L§)12V+r—3) .. ,Lz()Jrv—l)[AKéﬁ;N)]

- r— r— r—1 r—i— Py N
=_ZniL§)11V+ 2)L§’12V+ 3)---L1(,ff‘f )Lg\flr 1)"'L,(DITV)[K§ )],

=1
where Ll(,,‘:’.)[-] s are raising operators as in (2.2).

Proof. Since
s s—1 _ s —1
LOLE VY = LOLE V], ¢,q5,5 € R,
we obtain inductively that for ¢ =1,2,...,r,

L1(311V+r—2)L1(312V+r—3) . LI(JJTV_I) [ng\:_l)]

r— r— r—i —i— r—f— - p; N —1
= Ly LY LN L L LK)

= LéIIV+T—2)L§)12V+r—3) . "L(N+r_i)Lz(>ﬁTr—i—l) .. -Lz(,]rV)L;’iV'l)[K@N—l)]

Pi-1 n—e;

_ N+r—=2) 7 (N+r— N+r—i) 7 (Ntr—i— N1 (BN)
- _L1(31+ )_Lng_i_ 3)“.L§Ji—_il- )L£i+-ll_ 1)'“L§)r)[Kr'ip ]

Applying Ll(,llv+r_2)L§,12V+r_3) - L,(,Irv_l) on both sides of the equation (2.4), the
conclusion follows. a

Theorem 2.4. The multiple Kravchuk polynomial { K, ((fiiﬁZ)N) (z)} (forr =2)
satisfies a difference equation

(1 = p)(1 = po)a(z — YAV?y + z[N(p1 + p2 — 2p1p2)
+(2=p1 —p2)(1 - 2)|AVY + [(Np1 — 2)(Np2 — z) + Npipz — z]Ay
+[(1 = p2)n1 + (1 = p1)ns]zVy
+[n1(Np2 + p2 — 2) + na(Npy + py — z)]y = 0.
Proof. By Theorem 2.3, {KP#*N) (z)} satisfies a difference equation

(n1,n2)

LI LN D[Ay] = —n L[] - na L[],
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where

LMyl = (1 — p1)zVy + [(N + L)py — zly
and

Lyl = (1 - p2)zVy + [(N + 1)p2 — zly.
Since

LOOLEY ™) = (L= poaVLE D fy] + [V + Dpy ~ o)) LY [y

= (1 =p)aV[(1 - p2)aVy + (Np2 — z)y]
+((N +ps — 2))[(1 = p2)2Vy + (Np2 — z)y]
= (1-p)(1 - p2)a(z - )V?y
+2[(1 = p1)(1 = p2) + (1 =~ p1p2) + (1 - p1)(Np2 — @)
+ (1= p2)(Np1 — 2)]Vy

+ [(Np1 — 2)(Nps — z) + Npip1 — 2y,
the conclusion follows. O
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