A LAW OF THE ITERATED LOGARITHM FOR l^p-VALUED
GAUSSIAN RANDOM FIELDS

YONG-KAB CHOI, KYO-SHIN HWANG, AND HEE-JIN MOON

Abstract. A general law of the iterated logarithm (LIL) is established
for l^p-valued Gaussian random fields under explicit conditions.

1. Introduction and results

Csörgö and Shao [6] investigated the moduli of continuity, the almost sure
path behavior of large increments and the law of the iterated logarithm for
l^p-valued, $1 \leq p < \infty$, Gaussian processes with stationary increments, on the
basis of the well-known Borell inequality [2], and a Fernique type inequality
for large and small increments of l^p-valued stochastic processes, due to Csáki,
Csörgö and Shao [5] (cf. Lemma 2.1 of the just mentioned paper). Here we are
motivated by the trend setting results of Csörgö and Shao [6].

For our purpose, we introduce one of main theorems in Csörgö and Shao
[6]: Let $\{Y(t), t \geq 0\} = \{X_k(t), t \geq 0\}_{k=1}^\infty$ be a sequence of independent and
centered Gaussian processes with stationary increments $\sigma_k^2(h) := E\{X_k(t+h) -
X_k(t)\}^2$, where $\sigma_k(h)$ is assumed to be a nondecreasing continuous function for
each $k \geq 1$. Assume that $Y(t)$ takes values in the l^p-space almost surely, where
$1 \leq p < \infty$. Put

$$\sigma(p, h) = \left(\sum_{k=1}^\infty \sigma_k^p(h) \right)^{1/p}, \quad 1 \leq p < \infty,$$

$$\sigma^*(h) = \sup_{k \geq 1} \sigma_k(h),$$

(1.1)

$$\bar{\sigma}(p, h) = \begin{cases}
\sigma\left(\frac{2p}{2-p}, h\right), & \text{if } 1 \leq p < 2, \\
\sigma^*(h), & \text{if } 2 \leq p < \infty,
\end{cases}$$

$$\delta_p = \left(E|N(0,1)|^p\right)^{1/p}, \quad 1 \leq p < \infty,$$
where $N(0, 1)$ denotes the standard normal random variable. We recall that a function $Q(x)$ of $x > 0$ is said to be quasi-increasing if there is a positive constant c such that $Q(x) \leq cQ(y)$ for all $0 < x < y < \infty$. In this context and under these assumptions, Csörgő and Shao [6] proved the following law of the iterated logarithm for $\{Y(t), t \geq 0\}$.

Theorem A. Assume that $\tilde{\sigma}(p, h)/h^\alpha$ and $\sigma(p, h)/h^\alpha$ are quasi-increasing on $(0, \infty)$ for some $\alpha > 0$ and also that, as $T \to \infty$,

(a) $\sigma(p, T) = o\left(\tilde{\sigma}(p, T)(\log \log T)^{1/2}\right)$, $p \geq 1$ and, for each $\varepsilon > 0$,

(b) $\lim_{a \to \infty} \max_{j \geq \log a} \max_{k \geq 1} \left\{\sigma_k(a)\sigma_k(ja)\right\}^{-1}
	imes E\left\{(X_k(a) - X_k(0))(X_k(ja) - X_k(a))\right\} \leq 0.$

Then we have

$$
\limsup_{T \to \infty} \sup_{0 \leq s \leq T} \frac{||Y(s)||_{l^p}}{\tilde{\sigma}(p, T)(2 \log \log T)^{1/2}} = 1 \quad a.s.,
$$

(1.2)

$$
\limsup_{T \to \infty} \frac{||Y(T)||_{l^p}}{\tilde{\sigma}(p, T)(2 \log \log T)^{1/2}} = 1 \quad a.s.
$$

In this paper, we establish a general law of the iterated logarithm for l^p-valued Gaussian random fields under explicit conditions in place of the nonpositivity condition (b) of Theorem A.

We first introduce some notations for use in this paper. Let $t = (t_1, \ldots, t_N)$ and $s = (s_1, \ldots, s_N)$ be vectors in $[0, \infty)^N$. For convenience, we define

- $0 = (0, \ldots, 0)$ and $1 = (1, \ldots, 1)$ in $[0, \infty)^N$,
- $(t, s) = (t_1, \ldots, t_N, s_1, \ldots, s_N) \in [0, \infty)^{2N}$,
- $t \leq s$ if $t_i \leq s_i$ for all integers $1 \leq i \leq N$,
- $t \pm s = (t_1 \pm s_1, \ldots, t_N \pm s_N)$, $ts = (t_1s_1, \ldots, t_Ns_N)$,
- $at = (at_1, \ldots, at_N)$ for a real number a.

Throughout the paper, we assume the following conditions. Let $T = \{t : t = (t_1, \ldots, t_N) \in [0, \infty)^N\}$ be a real N-dimensional parameter space with the Euclidean norm $|| \cdot ||$ such that $||t|| = (\sum_{i=1}^N t_i^2)^{1/2}$. Assume that $\{X_k(t), t \in [0, \infty)^N\}_{k=1}^\infty$ is a sequence of independent separable and centered Gaussian random fields with $X_k(0) = 0$ and $\sigma_k(||h||) := \sqrt{E[X_k(t + h) - X_k(t)]^2}$ for $h > 0$, where $\sigma_k(h)$ are nondecreasing continuous functions of $h > 0$.

Let $\{X(t) := (X_1(t), X_2(t), \ldots, t \in [0, \infty)^N\}$ be an infinite dimensional Gaussian random field taking values in l^p-space with l^p-norm $|| \cdot ||_{l^p}$. Assume that $h = (h_1, \ldots, h_N)$ is in $[0, 1/\sqrt{N})^N$ to get $0 < ||h|| < 1$. For each $i = 1, \ldots, N$, let $f_i(h)$ be positive continuous functions of $h > 0$, and put

$$
f_h = (f_1(h), \ldots, f_N(h)), \quad \gamma(h) = \left\{2\log||f_h||\right\}^{1/2}.
$$
where \(\log x = \ln(\max\{x, 1\}) \). Here and thereafter we continue using the notations for \(\sigma(p, h), \tilde{\sigma}(p, h) \) and \(\delta_p \) as in (1.1), in our present context and under our present assumptions as well.

Since \(E||X(t+h) - X(t)||_p^p = \delta_p^p(\sigma(p, ||h||))^p \) for \(1 \leq p < \infty \), it follows that \(X(t+h) - X(t) \in L^p \) almost surely for fixed \(t \) and \(h \) if and only if \(\sigma(p, ||h||) < \infty \).

A positive function \(R(h) \) of \(h > 0 \) is said to be \textit{regularly varying} with exponent \(\alpha > 0 \) at \(b \geq 0 \) if \(\lim_{h \to b^+} \{R(xR(h))/R(h)\} = x^{\alpha} \) for \(x > 0 \). Recall that a function \(L(h) \) of \(h > 0 \) is said to be \textit{slowly varying} at \(b \geq 0 \) if \(\lim_{h \to b^+} \{L(xh)/L(h)\} = 1 \) for \(x > 0 \). Thus the regularly varying function \(R(h) \) can be written as \(R(h) = h^{\alpha}L(h) \).

The main results are as follows.

Theorem 1.1. Let \(X_k(t) \) and \(\sigma_k(||h||) \) be as above, and let \(\tilde{\sigma}(p, h) \) defined in (1.1) be a regularly varying function of \(h > 0 \) with exponent \(\tilde{\alpha} \) \((0 < \tilde{\alpha} < 1)\). For each \(i = 1, \ldots, N \), let \(f_i(h) \) be a positive increasing (or decreasing) and continuous function of \(h > 0 \). Then we have

\[
\lim_{h \to 0} \sup_{h \in [-N, N]} \frac{||X(f_h)||_p}{\sigma(p, ||f_h||)} \gamma(h) \geq 1 \quad \text{a.s.}
\]

In Theorems 1.1 and 1.2, we do not need the nonpositive condition (b) of Theorem A. Nevertheless we attempt new approach for their proofs.

Theorem 1.2. Let \(X_k(t) \) and \(\sigma_k(||h||) \) be as in Theorem 1.1, and let \(\sigma(p, h) \) and \(\tilde{\sigma}(p, h) \) defined in (1.1) be regularly varying functions of \(h > 0 \) with positive exponents \(\alpha \) and \(\tilde{\alpha} \), respectively. For each \(i = 1, \ldots, N \), let \(f_i(h) \) be a positive increasing (or decreasing) and continuous function of \(h > 0 \). Then we have

\[
\lim_{h \to 0} \sup_{h \in [-N, N]} \sup_{||f_h||} \frac{||X(t + s) - X(t)||_p}{\sigma(p, ||f_h||)} \gamma(h) \leq 1 \quad \text{a.s.}
\]

Combining Theorems 1.1 and 1.2 yields the following law of the iterated logarithm for \(l^p \)-valued Gaussian random fields.

Corollary 1.1 (law of the iterated logarithm). Let \(X_k(t) \) and \(\sigma_k(||h||) \) be as in Theorem 1.1. Suppose that \(\sigma(p, h) \) and \(\tilde{\sigma}(p, h) \) are regularly varying functions of \(h > 0 \) with exponents \(\alpha \) and \(\tilde{\alpha} \) \((0 < \alpha, \tilde{\alpha} < 1)\), respectively. For each \(i = 1, 2, \ldots, N \), let \(f_i(h) \) be a positive increasing (or decreasing) and continuous function of \(h > 0 \). Further, if the condition

(i) \(\sigma(p, ||f_h||) = o\left(\tilde{\sigma}(p, ||f_h||) \gamma(h)\right) \quad h \to 0 \)

is satisfied, then we have

\[
\lim_{h \to 0} \sup_{h \in [-N, N]} \sup_{||f_h||} \frac{||X(t + s) - X(t)||_p}{\sigma(p, ||f_h||) \gamma(h)} = 1 \quad \text{a.s.,}
\]

\[
\lim_{h \to 0} \sup_{h \in [-N, N]} \frac{||X(f_h)||_p}{\sigma(p, ||f_h||) \gamma(h)} = 1 \quad \text{a.s.}
\]
The structures of main theorems above and the new techniques for their proofs can be applied to develop a limit theory on \(l^p \)-valued random fields with respect to the following stochastic processes: Ornstein-Uhlenbeck processes (Csáki et al. [4]), Gaussian processes (Choi and Hwang [3]), Lin and Lu [9], Lévy Brownian motion (Lin and Choi [7], Zhang [10]) and many other related ones in various papers.

As can be seen in the following examples, the law of the iterated logarithm for \(l^p \)-valued Gaussian random fields is independent of the size of time parameter \(T \) or \(h \) (converging to infinity or zero, respectively).

Example 1.1. Consider the case \(N = 1 \) in Corollary 1.1. Let \(\{Y(t), t \geq 0\} = \{X_k(t), t \geq 0\}_{k=1}^{\infty} \) be a sequence of independent separable and centered Gaussian processes with \(X_k(0) = 0 \) and stationary increments \(\sigma_k^2(h) := \text{E}\{X_k(t+h) - X_k(t)\}^2 \), where \(\sigma_k(h) \) is assumed to be a nondecreasing continuous function for each \(k \geq 1 \). Assume that \(Y(t) \) takes values in the \(l^p \)-space almost surely, where \(1 \leq p < \infty \). Set \(N = 1 \) in Corollary 1.1 and put

\[
\begin{align*}
 h &= h_1 = h = 1/T \quad \text{for} \quad 1 < T < \infty, \\
 f_h &= f_1(h) = f_1(1/T) = T.
\end{align*}
\]

Then, it follows from Corollary 1.1 with \(\mathbf{t} = t = 0 \) that conditions of Theorem A (without the condition (b)) for

\[
0 < \alpha < 1, \quad \|f_h\| = T, \quad h \to 0 \iff T \to \infty,
\]

\[
\tilde{\sigma}(p, \|f_h\|) = \tilde{\sigma}(p, T) \quad \text{and} \quad \gamma(h) = \sqrt{2 \log \log T}
\]

are satisfied. Thus we obtain (1.2) of Theorem A.

Example 1.2. Let \(\{X_k(t), \ t \in [0, \infty)^N\}_{k=1}^{\infty} \) be a sequence as in Example 1.1. Set \(N = 1 \) in (1.6) of Corollary 1.1 and put

\[
\begin{align*}
 f_h &= f_1(h) = h = h \quad \text{for} \quad 0 < h < 1.
\end{align*}
\]

Then, it follows from Corollary 1.1 with \(\gamma(h) = \sqrt{2 \log \log(1/h)} \) that conditions of Remark 4.1 in Csörgő and Shao [6] (without the condition (4.37)) are satisfied. Thus we obtain (4.38) of Remark 4.1 in the just mentioned paper.

2. Proofs

The following Lemmas 2.1-2.2 are essential for the proof of Theorem 1.1, and Lemma 2.1 is a well-known version of the second Borel-Cantelli lemma.

Lemma 2.1. Let \(\{A_k, k \geq 1\} \) be a sequence of events. If

\[
\begin{align*}
 (a) \quad & \sum_{k=1}^{\infty} P(A_k) = \infty, \\
 (b) \quad & \liminf_{n \to \infty} \sum_{1 \leq j < k \leq n} \frac{P(A_j \cap A_k) - P(A_j)P(A_k)}{(\sum_{j=1}^{n} P(A_j))^2} \leq 0,
\end{align*}
\]

then \(P(A_n, \ i.o.) = 1 \).
Lemma 2.2 (Berman [1]). Let \(\{X_j, j = 1, 2, \ldots, n\} \) be centered and stationary normal random variables with \(E(X_iX_j) = r_{ij} \) and \(r_{ii} = 1 \). Let \(I_c^{-1} = [c, \infty) \) and \(I_c^{-1} = (-\infty, c) \). Denote by \(F_j \) the event \(\{X_j \in I_{c_j}^j\} \) for \(c_j \in (-\infty, \infty), j = 1, 2, \ldots, n \), where \(e_j \) is either +1 or -1. Let \(K \subset \{1, 2, \ldots, n\} \). If \(\{K_i, l = 1, 2, \ldots, s\} \) is a partition of \(K \), then

\[
P\left(\bigcap_{j \in K} F_j\right) - \sum_{l=1}^s P\left(\bigcap_{j \in K_{i_l}} F_j\right) \leq \sum_{1 \leq l < m \leq s} \sum_{i \in K_{i_l}} \sum_{j \in K_{i_m}} |r_{ij}| \phi(c_i, c_j; r_{ij}^*),
\]

where \(\phi(x, y; r) \) is the standard bivariate normal density with correlation \(r \), and \(r_{ij}^* \) is a number between 0 and \(r_{ij} \).

Since Theorem 1.1 does not possess such nonpositive condition as (b) of Theorem A or (2.9) of Theorem 2.1 in Csörgő and Shao [6], we must calculate the correlation function as in (2.2) below in order to apply Lemma 2.1. Also Lemma 2.2 is used to estimate an upper bound for the left hand of the condition (b) in Lemma 2.1 as can be seen in the proof of Theorem 1.1 below.

Proof of Theorem 1.1. First, consider the case \(1 \leq p < 2 \). From (3.2) in Csörgő and Shao [6], we have

\[
\frac{||X(f_h)||_{tr}}{\hat{\sigma}(p, ||f_h||)\gamma(h)} \leq \frac{\sum_{i=1}^\infty \left(\sigma_i(||f_h||)\right)^{2(p-1)/(2-p)}}{\hat{\sigma}(p, ||f_h||)\gamma(h)} X_i(f_h) =: Y(h) \cdot \gamma(h).
\]

Note that \(Y(h) \) is a standard normal random variable. Let

\[
\{h_k = (h_{1k}, \ldots, h_{Nk})\}_{k=1}^\infty
\]

be a decreasing sequence in \((0, 1/\sqrt{N})^N\) such that \(0 < h_{k+1} < h \leq h_k \) and \(\lim_{k \to \infty} h_k = 0 \). Define

\[
f_k = f_{h_k} = (f_1(h_k), \ldots, f_N(h_k)) \in (0, \infty)^N, \quad k \geq 1.
\]

The proof of Theorem 1.1 is completed by showing that

\[
\limsup_{k \to \infty} \frac{Y(h_k)}{\sqrt{2\log \log ||f_k||}} \geq 1 \quad \text{a.s.}
\]

For each \(i = 1, 2, \ldots, N \), let \(f_i(h) \) be increasing functions of \(h > 0 \), and put \(||f_k|| = \theta^{-k} \) for \(\theta > 1 \) and \(k \geq 1 \). Setting \(A_k = \{Y(h_k) > x_k\} \), where \(x_k = \sqrt{2(1-\varepsilon)} \log \log \theta^k, 0 < \varepsilon < 1 \), then

\[
P(A_k) \geq \frac{1}{\sqrt{2\pi}} \frac{\exp \left(\frac{-(1-\varepsilon) \log \log \theta^k}{2(1-\varepsilon) \log \log \theta^k}\right)}{2(1-\varepsilon) \log \log \theta^k} \geq c k^{-(1-\varepsilon)/2}
\]

for sufficiently large \(k \), where \(c > 0 \) is a constant. Thus we have \(\sum_{k=1}^\infty P(A_k) = \infty \). Next, it suffices to show that condition (b) of Lemma 2.1 is satisfied. For
\(k = 1, 2, \ldots, \) let

\[
Y_k = Y(h_k) = \sum_{i=1}^{\infty} \left(\frac{\sigma_i(||f_k||)}{\tilde{\sigma}(p, ||f_k||)^{p/(2-p)}} \right)^{(p-1)/(2-p)} X_i(f_k).
\]

Then, for \(k > l,\)

\[
E(Y_k Y_l) = \tilde{\sigma}(p, ||f_k||)^{-p/(2-p)} \tilde{\sigma}(p, ||f_l||)^{-p/(2-p)}
\times E \left\{ \sum_{i=1}^{\infty} \left(\sigma_i(||f_k||) \right)^{2(p-1)/(2-p)} X_i(f_k) \right\}
\times \sum_{i=1}^{\infty} \left(\sigma_i(||f_l||) \right)^{2(p-1)/(2-p)} X_i(f_l) \left\} \right.
\]

\[
= \tilde{\sigma}(p, ||f_k||)^{-p/(2-p)} \tilde{\sigma}(p, ||f_l||)^{-p/(2-p)}
\times \sum_{i=1}^{\infty} \left(\sigma_i(||f_k||) \right)^{2(p-1)/(2-p)} \left(\sigma_i(||f_l||) \right)^{2(p-1)/(2-p)} X_i(f_k) X_i(f_l)
\]

and

\[
|E \left\{ X_i(f_k) X_i(f_l) \right\}| = \frac{1}{2} \left| \sigma_i^2(||f_k||) + \sigma_i^2(||f_l||) - 2 \sigma_i^2(||f_k - f_l||) \right|
\]

\[
\leq \frac{1}{2} \left(\sigma_i^2(||f_k||) + \frac{1 - ||f_k - f_l||^2}{||f_l||^2} \sigma_i^2(||f_l||) \right)
\]

\[
< \frac{1}{2} \left(\sigma_i^2(||f_k||) + \frac{2||f_k||}{||f_l||} \sigma_i^2(||f_l||) \right).
\]

(2.1)

Consequently, using the Hölder inequality and the regular variation of \(\tilde{\sigma},\) we arrive at

\[
|r_{kl}| := |E(Y_k Y_l)| < \tilde{\sigma}(p, ||f_k||)^{-p/(2-p)} \tilde{\sigma}(p, ||f_l||)^{-p/(2-p)}
\times \sum_{i=1}^{\infty} \left(\sigma_i(||f_k||) \right)^{2(p-1)/(2-p)} \left(\sigma_i(||f_l||) \right)^{2(p-1)/(2-p)}
\times \left\{ \frac{1}{2} \sigma_i^2(||f_k||) + \frac{||f_k||}{||f_l||} \sigma_i^2(||f_l||) \right\}
\]

\[
\leq \left(\tilde{\sigma}(p, ||f_k||) \tilde{\sigma}(p, ||f_l||) \right)^{-p/(2-p)}
\times \left\{ \sum_{i=1}^{\infty} \left(\sigma_i(||f_k||) \sigma_i(||f_l||) \right)^{2(p-1)/(2-p)} \left(\sigma_i(||f_k||) \right)^2 \right\}
\]

\[
+ \frac{||f_k||}{||f_l||} \sum_{i=1}^{\infty} \left(\sigma_i(||f_k||) \sigma_i(||f_l||) \right)^{2(p-1)/(2-p)} \left(\sigma_i(||f_l||) \right)^2 \right\}
\]
\[\begin{align*}
&\leq \left(\bar{\sigma}(p, \| f_k^0 \|) \bar{\sigma}(p, \| f_l^1 \|) \right)^{-p/(2-p)} \\
&\times \left\{ \left(\sum_{i=1}^{\infty} \left(\sigma_i(\| f_k^0 \|) \sigma_i(\| f_l^1 \|) \right)^{2p/(2-p)} \right)^{(p-1)/p} \\
&\quad \times \left(\sum_{i=1}^{\infty} \left(\sigma_i(\| f_k^0 \|) \right)^{2p/(2-p)} \right)^{(2-p)/p} \\
&\quad + \frac{\| f_k^0 \|}{\| f_l^1 \|} \left(\sum_{i=1}^{\infty} \left(\sigma_i(\| f_k^0 \|) \sigma_i(\| f_l^1 \|) \right)^{2p/(2-p)} \right)^{(p-1)/p} \\
&\quad \times \left(\sum_{i=1}^{\infty} \left(\sigma_i(\| f_l^1 \|) \right)^{2p/(2-p)} \right)^{(2-p)/p} \right\} \\
&\leq \left(\bar{\sigma}(p, \| f_k^0 \|) \bar{\sigma}(p, \| f_l^1 \|) \right)^{-p/(2-p)} \\
&\times \left\{ \left(\bar{\sigma}(p, \| f_k^0 \|) \bar{\sigma}(p, \| f_l^1 \|) \right)^{2(p-1)/(2-p)} \left(\bar{\sigma}(p, \| f_k^0 \|) \right)^2 \\
&\quad + \frac{\| f_k^0 \|}{\| f_l^1 \|} \left(\bar{\sigma}(p, \| f_k^0 \|) \bar{\sigma}(p, \| f_l^1 \|) \right)^{2(p-1)/(2-p)} \left(\bar{\sigma}(p, \| f_l^1 \|) \right)^2 \right\} \\
&= \frac{\bar{\sigma}(p, \| f_k^0 \|)}{\bar{\sigma}(p, \| f_l^1 \|)} + \frac{\bar{\sigma}(p, \| f_l^1 \|)}{\bar{\sigma}(p, \| f_k^0 \|)} \left(\frac{\| f_k^0 \|}{\| f_l^1 \|} \right)^{\alpha'} + \left(\frac{\| f_l^1 \|}{\| f_k^0 \|} \right)^{1-\alpha''} \\
&\leq \left(\frac{\| f_k^0 \|}{\| f_l^1 \|} \right)^{\alpha'} + \left(\frac{\| f_l^1 \|}{\| f_k^0 \|} \right)^{1-\alpha''} = \theta^{-(k-l)\alpha'} + \theta^{-(k-l)(1-\alpha'')} \\
&\leq 2\theta^{-(k-l)\alpha_0} =: \eta_{kl},
\end{align*} \]

where \(0 < \alpha' < \tilde{\alpha} < \alpha'' < 1 \) and \(\alpha_0 = \min\{\alpha', 1 - \alpha''\} \).

On the other hand, if \(f_i(h), i = 1, \ldots, N, \) are decreasing functions of \(h > 0, \) then we put \(\| f_i \| = \theta^k \) for \(k \geq 1 \) and \(\theta > 1, \) and set \(x_k = \sqrt{2(1-\epsilon) \log \log \theta^k}, \) \(0 < \epsilon < 1, \) as before. By proceeding along the same lines as above, we can also obtain the following:

\[|r_{kl}| \leq \left(\frac{\| f_l^1 \|}{\| f_k^0 \|} \right)^{\alpha'} + \left(\frac{\| f_k^0 \|}{\| f_l^1 \|} \right)^{1-\alpha''} = \theta^{-(k-l)\alpha'} + \theta^{-(k-l)(1-\alpha'')} \leq 2\theta^{-(k-l)\alpha_0} =: \eta_{kl} \]

for \(k > l. \) Let \(\xi_j = \left\lceil \frac{2\log\theta}{\alpha_0} \right\rceil \) for any \(j \) \((j < j \leq k)\) satisfying \(x_j^2 \geq x_l x_k. \) It follows from Lemma 2.2 that, for sufficiently large \(n, \)

\[\sum_{1\leq l < k \leq n} \{ P(A_l \cap A_k) - P(A_l)P(A_k) \} \leq \sum_{l=1}^{n-1} \sum_{k=l+1}^{n} \frac{|r_{kl}|}{2\pi(1 - r_{kl}^*)^{1/2}} \exp \left\{ - \frac{x_l^2 + x_k^2 - 2x_l x_k |r_{kl}^*|}{2(1 - |r_{kl}^*|^2)} \right\} \]
\[
\leq \sum_{l=1}^{n-1} \sum_{k=l+1}^{n} \frac{|r_{kl}|}{2\pi(1 - r_{kl}^2)^{1/2}} e^{-x_l^2/2} \exp \left\{ - \frac{(1 - |r_{kl}|^2)}{2} \right\} \\
+ \sum_{l=1}^{n-1} \sum_{k=l+\xi_j+1}^{n} \frac{|r_{kl}|}{2\pi(1 - r_{kl}^2)^{1/2}} e^{-x_k^2/2} e^{-x_l^2/2} \exp \left\{ - \frac{1}{2} |r_{kl}|^2 |r_{kj}| \right\} \\
= : S_1 + S_2.
\]

Consider the sum \(S_1\). If \(r (0 < r < 1)\) is the maximum of \(|r_{kl}|\) for \(1 \leq l < k \leq n\), then we have

\[
S_1 \leq \sum_{l=1}^{n-1} \sum_{k=l+1}^{n} \frac{r}{2\pi \sqrt{1 - r^2}} e^{-x_l^2/2} \exp \left\{ - \frac{(1 - r)}{2} \right\} \\
\leq c \sum_{l=1}^{n-1} \xi_j e^{-x_l^2/2} \exp \left\{ - R \frac{(1 - \varepsilon) \log \log \theta^j}{2} \right\} \\
\leq c \sum_{l=1}^{n-1} e^{-x_l^2/2} (\log \theta) j^{-R(1-\varepsilon)} \leq c \sum_{l=1}^{n-1} e^{-x_l^2/2} \frac{1}{\sqrt{2\pi x_l^2}} j^{-R(1-\varepsilon)/2} \\
\leq c \sum_{l=1}^{n} P(A_l) j^{-R(1-\varepsilon)/2},
\]

where \(R := (1 - r)/(1 + r)\) and \(c > 0\) is a constant. Next, consider the second sum \(S_2\). For \(k - l > \xi_j\), since

\[
|r_{kl}| x_j^2 \leq \eta_{kl} x_j^2 \leq 4j^{-2} \log(j \log \theta),
\]

we have

\[
S_2 \leq c j^{-1} \sum_{l=1}^{n-1} \sum_{k=1}^{n} \frac{1}{2\pi x_l^2 x_k^2} e^{-(x_l^2 + x_k^2)/2} \leq c j^{-1} \left(\sum_{l=1}^{n} P(A_l) \right)^2.
\]

From (2.3) and (2.4), we obtain

\[
\sum_{1 \leq l < k \leq n} \left\{ P(A_l \cap A_k) - P(A_l) P(A_k) \right\} \\
\leq c j^{-R(1-\varepsilon)/2} \left(\sum_{l=1}^{n} P(A_l) + \left(\sum_{l=1}^{n} P(A_l) \right)^2 \right),
\]

and condition (b) of Lemma 2.1 is satisfied for \(j\) large enough as \(n \to \infty\). \(\square\)

To prove Theorem 1.2, we need the following lemma which is a modification of Lemma 2.3 in Lin et al. [8].

Lemma 2.3. Let \(X_k(t)\) and \(\sigma_k(||h||)\) be as in Theorem 1.2, and let \(\sigma(p, h)\) and \(\sigma(p, h)\) defined in (1.1) be regularly varying functions with positive exponents \(\alpha\) and \(\bar{\alpha}\), respectively. For each \(i = 1, \ldots, N\), let \(f_i(h)\) be a positive continuous
function. Then, for any $0 < \epsilon < 1$, there exists a positive constant c depending only on ϵ and N such that, for any $x \geq 1$,

$$
P\left\{ \sup_{||t|| \leq ||f_h||} \sup_{||s|| \leq ||f_h||} ||X(t + s) - X(t)||_p \geq (1 + \epsilon) \left(\delta_{p} \sigma(p, ||f_h||) + x\bar{\sigma}(p, ||f_h||) \right) \right\} \leq c \exp \left(-\frac{x^2}{2} \right).
$$

Now Theorem 1.2 is proved by using Lemma 2.3.

Proof of Theorem 1.2. Let $\theta = (1 + \epsilon)^2$ for any given $\epsilon > 0$. Define:

$$A_j = \{ h : \theta^j \leq ||f_h|| \leq \theta^{j+1} \}, \quad -\infty < j < \infty,$$

$$||f_{h_j}|| = \sup \{ ||f_h|| : h \in A_j \}.$$

Then, we have

$$
limit \sup \sup_{h \to 0} \sup_{||t|| \leq ||f_h||} \sup_{||s|| \leq ||f_h||} \frac{||X(t + s) - X(t)||_p}{\delta_{p} \sigma(p, ||f_h||) + \bar{\sigma}(p, ||f_h||) \gamma(h)} \leq \lim \sup \sup_{||t|| \leq ||f_h||} \sup_{||s|| \leq ||f_h||} \frac{||X(t + s) - X(t)||_p}{\delta_{p} \sigma(p, \theta^j) + \bar{\sigma}(p, \theta^j) \sqrt{2 \log \log \theta^j}} \leq \theta^\alpha \lim \sup \sup_{||t|| \leq ||f_h||} \sup_{||s|| \leq ||f_h||} \frac{||X(t + s) - X(t)||_p}{\delta_{p} \sigma(p, ||f_{h_j}||) + \bar{\sigma}(p, ||f_{h_j}||) \sqrt{2 \log \log \theta^j}},$$

where $\alpha_0 = \max\{\alpha, \bar{\alpha}\}$. Now, we will show that the right-hand side of (2.5) is less than or equal to θ^α_0 almost surely. Applying Lemma 2.3, there exists $c_{\epsilon} > 0$ such that

$$
P\left\{ \sup_{||t|| \leq ||f_{h_j}||} \sup_{||s|| \leq ||f_{h_j}||} ||X(t + s) - X(t)||_p > (1 + \epsilon)^2 \left(\delta_{p} \sigma(p, ||f_{h_j}||) \right) \right\} \leq c_{\epsilon} \exp \left(-\frac{x^2}{2} \right).$$
\begin{align*}
&\leq \mathbb{P} \left\{ \sup_{\|t\| \leq \|f_{h_j}\|} \sup_{\|s\| \leq \|f_{h_j}\|} ||X(t+s) - X(t)||_{\ell^p} > \left(1 + \varepsilon \right) \left(\delta_p \sigma(p, \|f_{h_j}\|) + \sqrt{1 + \varepsilon} \tilde{\sigma}(p, \|f_{h_j}\|) \sqrt{2 \log \log \theta^{[j]}} \right) \right\} \\
&\leq c \exp \left(- (1 + \varepsilon) \log \log \theta^{[j]} \right) \leq c |j \lor 1|^{-1 - \varepsilon}
\end{align*}

for \(|j|\) large enough, where \(j \lor 1 = \max\{j, 1\}\). Hence we have

\begin{equation*}
\sum_{|j| = 1}^{\infty} \mathbb{P} \left\{ \sup_{\|t\| \leq \|f_{h_j}\|} \sup_{\|s\| \leq \|f_{h_j}\|} ||X(t+s) - X(t)||_{\ell^p} > \left(1 + \varepsilon \right)^2 \left(\delta_p \sigma(p, \|f_{h_j}\|) + \tilde{\sigma}(p, \|f_{h_j}\|) \sqrt{2 \log \log \theta^{[j]}} \right) \right\} < \infty,
\end{equation*}

and the Borel-Cantelli lemma implies

\begin{equation}
\limsup_{|j| \to \infty} \sup_{\|t\| \leq \|f_{h_j}\|} \sup_{\|s\| \leq \|f_{h_j}\|} \frac{||X(t+s) - X(t)||_{\ell^p}}{\delta_p \sigma(p, \|f_{h_j}\|) + \tilde{\sigma}(p, \|f_{h_j}\|) \sqrt{2 \log \log \theta^{[j]}}} \leq 1 \quad \text{a.s.}
\end{equation}

Combining (2.6) with (2.5) yields (1.4) by the arbitrariness of \(\theta\). \qed

\section*{References}

YONG-KAB CHOI
DEPARTMENT OF MATHEMATICS
GYEONGSANG NATIONAL UNIVERSITY
JINJU 660-701, KOREA
E-mail address: mathykch@nongae.gsnu.ac.kr

KOY-SHIN HWANG
DEPARTMENT OF MATHEMATICS
GYEONGSANG NATIONAL UNIVERSITY
JINJU 660-701, KOREA
E-mail address: hwang0412@naver.com

HEE-JIN MOON
DEPARTMENT OF MATHEMATICS
GYEONGSANG NATIONAL UNIVERSITY
JINJU 660-701, KOREA
E-mail address: mhj0307@naver.com