DOI QR코드

DOI QR Code

STRONG k-DEFORMATION RETRACT AND ITS APPLICATIONS

  • Han, Sang-Eon (DEPARTMENT OF COMPUTER AND APPLIED MATHEMATICS HONAM UNIVERSITY)
  • Published : 2007.11.30

Abstract

In this paper, we study a strong k-deformation retract derived from a relative k-homotopy and investigate its properties in relation to both a k-homotopic thinning and the k-fundamental group. Moreover, we show that the k-fundamental group of a wedge product of closed k-curves not k-contractible is a free group by the use of some properties of both a strong k-deformation retract and a digital covering. Finally, we write an algorithm for calculating the k-fundamental group of a dosed k-curve by the use of a k-homotopic thinning.

References

  1. G. Bertrand, Simple points, topological numbers and geodesic neighborhoods in cubic grids, Pattern Recognition Letters 15 (1994), no. 10, 1003-1011 https://doi.org/10.1016/0167-8655(94)90032-9
  2. G. Bertrand and R. Malgouyres, ome topological properties of surfaces in $Z^3$, J. Math. Imaging Vision 11 (1999), no. 3, 207-221 https://doi.org/10.1023/A:1008348318797
  3. L. Boxer, A classical construction for the digital fundamental group, J. Math. Imaging Vision 10 (1999), no. 1, 51-62 https://doi.org/10.1023/A:1008370600456
  4. A. I. Bykov, L. G. Zerkalov, and M. A. Rodriguez Pineda, Index of point of 3-D digital binary image and algorithm for computing its Euler characteristic, Pattern Recognition 32 (1999), no. 5, 845-50 https://doi.org/10.1016/S0031-3203(98)00023-5
  5. J. Dontchev and H. Maki, Groups of $\theta$ -generalized homeomorphisms and the digital line, Topology Appl. 95 (1999), no. 2, 113–28 https://doi.org/10.1016/S0166-8641(98)00004-2
  6. S. E. Han, Algorithm for discriminating digital images w. r. t. a digital $(k_0, k_1)$- homoeomorphism, J. Appl. Math. Comput. 18 (2005), no. 1-2, 505–12
  7. S. E. Han, Comparison between digital continuity and computer continuity, Honam Math. J. 26 (2004), no. 3, 331-339
  8. S. E. Han, Computer topology and its applications, Honam Math. J. 25 (2003), no. 1, 153-162
  9. S. E. Han, Connected sum of digital closed surfaces, Inform. Sci. 176 (2006), no. 3, 332-348 https://doi.org/10.1016/j.ins.2004.11.003
  10. S. E. Han, Digital coverings and their applications, J. Appl. Math. Comput. 18 (2005), no. 1-2, 487-495
  11. S. E. Han, Digital fundamental group and Euler characteristic of a connected sum of digital closed surfaces, Information Sciences 177 (2007), no. 16, 3314-326 https://doi.org/10.1016/j.ins.2006.12.013
  12. S. E. Han, Discrete Homotopy of a Closed k-Surface, LNCS 4040, Springer-Verlag Berlin, pp.214–25 (2006)
  13. S. E. Han, Equivalent $(k_0, k_1$ -covering and generalized digital lifting, Information Sciences, www.sciencedirect.com (Articles in press), 2007 https://doi.org/10.1016/j.ins.2007.02.004
  14. S. E. Han, Erratum to: 'Non-product property of the digital fundamental group' , Inform. Sci. 176 (2006), no. 2, 215-216 https://doi.org/10.1016/j.ins.2005.03.014
  15. S. E. Han, Generalized digital $(k_0, k_1$ -homeomorphism, Note Mat. 22 (2003/04), no. 2, 157-166 https://doi.org/10.1285/i15900932v22n2p157
  16. S. E. Han, Minimal digital pseudotorus with k-adjacency, $k\;{\in}$ {6, 18, 26}, Honam Math. J. 26 (2004), no. 2, 237-246
  17. S. E. Han, Minimal simple closed 18-surfaces and a topological preservation of 3D surfaces, Inform. Sci. 176 (2006), no. 2, 120-134 https://doi.org/10.1016/j.ins.2005.01.002
  18. S. E. Han, Non-product property of the digital fundamental group, Inform. Sci. 171 (2005), no. 1-3, 73-91 https://doi.org/10.1016/j.ins.2004.03.018
  19. S. E. Han, On the simplicial complex stemmed from a digital graph, Honam Math. J. 27 (2005), no. 1, 115-129
  20. S. E. Han, Remarks on Digital k-homotopy equivalence, Honam Math. J. 29 (2007), no. 1, 101-118 https://doi.org/10.5831/HMJ.2007.29.1.101
  21. S. E. Han, The k-fundamental group of a closed k-surface, Inform. Sci. 177 (2007), no. 18, 3731-3748 https://doi.org/10.1016/j.ins.2007.02.031
  22. F. Harary, Graph theory, Addison-Wesley Publishing Co., Reading, Mass.-Menlo Park, Calif.-London, 1969
  23. E. Khalimsky, Motion, deformation, and homotopy in finite spaces, Proceedings IEEE International Conferences on Systems, Man, and Cybernetics (1987), 227-234
  24. E. Khalimsky, R. Kopperman, and P. R. Meyer, Computer graphics and connected topologies on finite ordered sets, Topology Appl. 36 (1990), no. 1, 1-17 https://doi.org/10.1016/0166-8641(90)90031-V
  25. T. Y. Kong, A digital fundamental group, Computers and Graphics 13 (1989), no. 2, 159-166 https://doi.org/10.1016/0097-8493(89)90058-7
  26. T. Y. Kong and A. Rosenfeld, Topological Algorithms for the Digital Image Processing, Elsevier Science, Amsterdam, 1996
  27. V. Kovalevsky, Finite topology as applied to image analysis, Computer Vision, Graphic, and Image processing 46 (1989), 141-161 https://doi.org/10.1016/0734-189X(89)90165-5
  28. R. Malgouyres, Homotopy in two-dimensional digital images, Theoret. Comput. Sci. 230 (2000), no. 1-2, 221-233 https://doi.org/10.1016/S0304-3975(98)00347-8
  29. R. Malgouyres and A. Lenoir, Topology preservation within digital surfaces, Graphical Models 62 (2000), no. 2, 71-84 https://doi.org/10.1006/gmod.1999.0517
  30. W. S. Massey, Algebraic Topology, Springer-Verlag, New York, 1977
  31. A. Rosenfeld, Continuous functions on digital pictures, Pattern Recognition Letters 4 (1986), no. 3, 177-184 https://doi.org/10.1016/0167-8655(86)90017-6

Cited by

  1. UTILITY OF DIGITAL COVERING THEORY vol.36, pp.3, 2014, https://doi.org/10.5831/HMJ.2014.36.3.695
  2. The Almost Pasting Property of Digital Continuity vol.110, pp.1, 2010, https://doi.org/10.1007/s10440-008-9422-0
  3. KD-(k0, k1)-HOMOTOPY EQUIVALENCE AND ITS APPLICATIONS vol.47, pp.5, 2010, https://doi.org/10.4134/JKMS.2010.47.5.1031
  4. COMPARISON AMONG SEVERAL ADJACENCY PROPERTIES FOR A DIGITAL PRODUCT vol.37, pp.1, 2015, https://doi.org/10.5831/HMJ.2015.37.1.135
  5. Homotopy equivalence which is suitable for studying Khalimsky nD spaces vol.159, pp.7, 2012, https://doi.org/10.1016/j.topol.2011.07.029
  6. Contractibility and fixed point property: the case of Khalimsky topological spaces vol.2016, pp.1, 2016, https://doi.org/10.1186/s13663-016-0566-8
  7. AN EQUIVALENT PROPERTY OF A NORMAL ADJACENCY OF A DIGITAL PRODUCT vol.36, pp.1, 2014, https://doi.org/10.5831/HMJ.2014.36.1.199
  8. REMARK ON GENERALIZED UNIVERSAL COVERING SPACE IN DIGITAL COVERING THEORY vol.31, pp.3, 2009, https://doi.org/10.5831/HMJ.2009.31.3.267
  9. EXTENSION PROBLEM OF SEVERAL CONTINUITIES IN COMPUTER TOPOLOGY vol.47, pp.5, 2010, https://doi.org/10.4134/BKMS.2010.47.5.915
  10. Existence of the Category DTC 2 (K) Equivalent to the Given Category KAC 2 vol.67, pp.8, 2016, https://doi.org/10.1007/s11253-016-1150-4
  11. REMARKS ON SIMPLY k-CONNECTIVITY AND k-DEFORMATION RETRACT IN DIGITAL TOPOLOGY vol.36, pp.3, 2014, https://doi.org/10.5831/HMJ.2014.36.3.519
  12. IDENTIFICATION METHOD FOR DIGITAL SPACES vol.33, pp.1, 2011, https://doi.org/10.5831/HMJ.2011.33.1.051
  13. REGULAR COVERING SPACE IN DIGITAL COVERING THEORY AND ITS APPLICATIONS vol.31, pp.3, 2009, https://doi.org/10.5831/HMJ.2009.31.3.279
  14. DIGITAL GEOMETRY AND ITS APPLICATIONS vol.30, pp.2, 2008, https://doi.org/10.5831/HMJ.2008.30.2.207
  15. Existence Problem of a Generalized Universal Covering Space vol.109, pp.3, 2010, https://doi.org/10.1007/s10440-008-9347-7
  16. PROPERTIES OF A GENERALIZED UNIVERSAL COVERING SPACE OVER A DIGITAL WEDGE vol.32, pp.3, 2010, https://doi.org/10.5831/HMJ.2010.32.3.375
  17. Comparison among digital fundamental groups and its applications vol.178, pp.8, 2008, https://doi.org/10.1016/j.ins.2007.11.030
  18. CLASSIFICATION OF SPACES IN TERMS OF BOTH A DIGITIZATION AND A MARCUS WYSE TOPOLOGICAL STRUCTURE vol.33, pp.4, 2011, https://doi.org/10.5831/HMJ.2011.33.4.575
  19. DIGITAL HOMOLOGY GROUPS OF DIGITAL WEDGE SUMS vol.38, pp.4, 2016, https://doi.org/10.5831/HMJ.2016.38.4.819
  20. Map Preserving Local Properties of a Digital Image vol.104, pp.2, 2008, https://doi.org/10.1007/s10440-008-9250-2
  21. Multiplicative Property of the Digital Fundamental Group vol.110, pp.2, 2010, https://doi.org/10.1007/s10440-009-9486-5
  22. Extension of continuity of maps between axiomatic locally finite spaces vol.88, pp.14, 2011, https://doi.org/10.1080/00207160.2011.577892
  23. Ultra regular covering space and its automorphism group vol.20, pp.4, 2010, https://doi.org/10.2478/v10006-010-0053-z
  24. The k-Homotopic Thinning and a Torus-Like Digital Image in Z n vol.31, pp.1, 2008, https://doi.org/10.1007/s10851-007-0061-2
  25. ARRANGEMENT OF ELEMENTS OF LOCALLY FINITE TOPOLOGICAL SPACES UP TO AN ALF-HOMEOMORPHISM vol.33, pp.4, 2011, https://doi.org/10.5831/HMJ.2011.33.4.617
  26. REMARKS ON DIGITAL HOMOTOPY EQUIVALENCE vol.29, pp.1, 2007, https://doi.org/10.5831/HMJ.2007.29.1.101
  27. DIGITAL COVERING THEORY AND ITS APPLICATIONS vol.30, pp.4, 2008, https://doi.org/10.5831/HMJ.2008.30.4.589
  28. COMMUTATIVE MONOID OF THE SET OF k-ISOMORPHISM CLASSES OF SIMPLE CLOSED k-SURFACES IN Z3 vol.32, pp.1, 2010, https://doi.org/10.5831/HMJ.2010.32.1.141
  29. Cartesian Product of the Universal Covering Property vol.108, pp.2, 2009, https://doi.org/10.1007/s10440-008-9316-1