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STRONG k-DEFORMATION RETRACT AND
ITS APPLICATIONS

SanGg-Eon HaN

ABSTRACT. In this paper, we study a strong k-deformation retract de-
rived from a relative k-homotopy and investigate its properties in relation
to both a k-homotopic thinning and the k-fundamental group. Moreover,
we show that the k-fundamental group of a wedge product of closed k-
curves not k-contractible is a free group by the use of some properties of
both a strong k-deformation retract and a digital covering. Finally, we
write an algorithm for calculating the k-fundamental group of a closed
k-curve by the use of a k~homotopic thinning.

1. Introduction

A (binary) digital image (X, k) C Z™ in computer science is exactly a dis-
crete topological space X C Z™ with one of the k-adjacency relations of Z™.
During the past five years, in relation to digital (ko, k1 )-covering theory, digital
k-curve and closed k-surface theory, and digital k-graph theory, there are many
papers including [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23,
28, 29]. In order to study these areas, we have developed many basic notions
and terminologies such as the k-adjacency relations of Z™, (ko, k; )-continuity,
(ko, k1)-homeomorphism, digital k-graph, (ko, k1)-isomorphism, (strongly) lo-
cal (ko, k1 )-isomorphism, (relative) (kq, k1)-homotopy, strong k-deformation,
(graph) (ko, k1)-homotopy equivalence, k-homotopic thinning, universal (kq,
k1)-covering, digital product image, digital fundamental group, generalized dig-
ital lifting theorem, discrete Deck’s transformation group, Euler characteristic
of a digital image, and so forth. The paper [19] (see also [11, 21]) devel-
oped the notions of graph (ko, k)~-isomorphism, graph (ko, k)-homotopy, graph
(ko, k)-homotopy equivalence, and graph (ko, k)-covering from the view point
of digital k-graph theory. Furthermore, in relation to the study of a digital
image (X, k) in Z™ (or a discrete topological space X C Z™ with k-adjacency),
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the paper [19, 25] (see also [11]) invoked the utility of a digital graph theoretical
approach as well as a discrete topological approach considering the adjacency
relations of Z™ in [8] (see also [10, 11, 12, 13, 15, 16]). Indeed, a digital image
(X,k) in Z™ can be recognized to be a digital graph Gy on Z™ [19, 25] (see
also [11, 13, 21]). Furthermore, the papers [11, 19] proposed the method how
to realize a digital image into a simplicial complex. Besides, the paper [19] (see
also [11]) showed that a digitally (ko, k1)-continuous map could lead to both
a graph (ko, k;)-homomorphism and a simplicial map. Consequently, it turns
out that the recognition of a digital image in terms of a digital k-graph or a
simplicial complex gives some benefits in studying the Euler characteristic of
a digital image [11]. The main advantages lie so convenient and efficient for
dealing with a discrete topological space with k-adjacency (X, k) by the use of
various tools derived from classical graph theory. There are some errors and
insufficient presentations in relation to some examples of a closed k-surface in
the papers {12, 16, 20, 21], which are corrected in this paper (see Remark 4.3).
The study of discrete objects in Z™ has proceeded in order to find their discrete
topological characterizations such as 3D Jordan theorem, a strong homotopy,
some local properties of a strong 18- or 26- surface, a thinning algorithm within
a digital Jordan surface, the digital k-topological number, and the digital k-
linking number [1, 28, 29].

Up to now, the study of discrete objects in Z™ has proceeded with the
following approaches.

e The digital (or discrete) topological approach was introduced in [1, 3, 6,
7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 31] with the adjacency
relations of Z™.

e The connected order topological space was introduced in [24], which re-
covers the structure of a topology.

e The cell complex approach was developed in [27] by which an object is
recognized to be a structure consisting of different dimensional cells. Also, this
approach can recover the structure of a topology.

e The Alexandroff topological approach was established with Khalimsky
continuity and a special kind of homeomorphism [5, 7).

In this paper, we use both the discrete topological approach and the dig-
ital k-graph theoretical one to study a discrete object X C Z™ with one of
the k-adjacency of Z". For a set X C Z", consider the discrete topologi-
cal subspace (X,Dx) induced from the discrete topology on (Z", D). Fur-
thermore, consider a ko-adjacency of (X,Dx) C (Z™, D) and a k;-adjacency
of (Y,Dy) C (Z™,D). Hereafter, by (X, ko) and (Y, ki) we denote the dis-
crete topological spaces (X, Dx) C (2™, D) with kp-adjacency and (Y, Dy) C
(Z™,D) with k,-adjacency, respectively. Then, for a standard continuous
map f : (X, k) — (Y,k1), we easily see that f need not preserve the ko-
connectivity of (X, ko) into the k;-connectivity of (Y, k;). Thus, we established
the (ko, k1)-continuity in Proposition 2.1 and Remark 2.2. Besides, the no-
tions of (ko, k1 )-isomorphism, and relative (kg, k;)-homotopy, k-fundamental
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group, and (ko, k1 )-covering were established for the study of some topological
properties of some discrete objects in Z" [6, 7, 8, 9, 10, 11, 12, 13].

By the use of the relative (ko, k1)-homotopy in [21] (see also [9, 11, 12, 13]),
we can establish the notions of strong k-deformation retract and k-homotopic
thinning. In this paper, we study the k-fundamental group by the use of
the (2, k)-homotopy in [3] and (ko, k1)-covering theory in [10, 12] (see also
[13, 14, 18, 19, 21]), the digital k-homotopy equivalence in [16], and the (digital
graph) (ko, k1)-homotopy equivalence in [19]. Besides, the unique digital lifting
theorem in [10, 18], the digital homotopy lifting theorem in [10, 12, 13, 21], an
automorphism group of a digital (ko, k1 )-covering map in [13], and the universal
(Ko, k1)-covering theorem in [13] can be used to calculate the k-fundamental
group of some discrete space in Z™.

Motivated by the covering theory in algebraic topology, (digital) (ko, k; )-
covering theory was developed in [10, 18] (see also [12, 13, 19, 21]) and has
been often used for the calculation of the k-fundamental group of some discrete
object with k-adjacency of Z™ and the classification of discrete spaces with k-
adjacency.

The paper is organized as follows. Section 2 provides some basic notions in-
cluding the origins of a (ko, k1 )-isomorphism and a geometric realization. Sec-
tion 3 sheds light on the digital k-graph theoretical methods in digital topology.
Section 4 studies a strong k-deformation retract, a k-homotopic thinning, a
digital k-homotopy equivalence, and a (digital graph) (ko, k1 )-homotopy equiv-
alence. Section 5 describes the notion of strongly local (ky, k; )-isomorphism
and investigates its applications. Section 6 investigates some properties of a
(digital graph) (ko, ky)-covering. Section 7 calculates the digital k-fundamental
group of a closed k-curves by the use of some properties of a digital covering
and a strong k-deformation retract. Section 8 investigates some digital topo-
logical properties of a wedge product in digital topology and calculates the
k-fundamental group of a wedge product of closed k-curves with some hypoth-
esis. In Section 9, we write an algorithm for calculating the k-fundamental
group of any closed k-curve. Section 10 concludes the paper with a summary.

2. Preliminaries

Let Z and N represent the sets of integers and natural numbers, respectively.
A digital picture is commonly represented as a quadruple (2", k, k, X), where
n € N, (X, Dx) C (Z", D) is a discrete topological space depicted, & represents
an adjacency relation for X, and k represents an adjacency relation for Z"™ — X
[26, 31]. From now on, an n-dimensional discrete topological space X C Z"
is considered with one of the k-adjacency relations of Z" in a digital picture
(Z",k,k, X), n > 1, where (k, k) € {(k,2n), (2n,3" — 1)}, and each k is one
of the k-adjacency relations of Z™ in (2.1). Obviously, the space X C Z is‘.
considered in a digital picture (Z,2,2, X). We say that the pair (X,k) is a
space with k-adjacency (briefly, space if not confused).
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As a generalization of the commonly used 4- and 8-adjacency of Z2, and
6-, 18-, and 26-adjacency of Z3, the adjacency relations of Z", n > 1, were
established in [10] (see also [6, 7, 8, 9, 11, 12, 13]) as follows.

For a positive integer m with 1 < m < n, two distinct points p = (p1, p2,

v Pn), ¢ =(q1,92,.-.,q,) € Z™ are adjacent according to m if

o there are at most m distinct indices ¢ such that |p; — ¢;| = 1; and

e for all indices ¢ such that |p; — ¢;| # 1, pi = ¢;.

In the following, this criterion consisting of the two conditions is called
(CONx) [8, 10, 18] (see also [6, 7, 11, 12, 14]). More precisely, by Ni(p) we
denote the set of the points ¢ € Z™ which are adjacent to a given point p
according to (CON%) and the number k := k(m,n) is the cardinal number of
Ni(p) called the k-neighbors of p [26]. Consequently, given a natural number
m in (CON%) with 1 < m < n determines each of the following k-adjacency
relations of Z™ in terms of (CONx) (8] (see also [6, 7, 9, 10, 11, 12, 13]).

2n, n>1,
3n 1, n>2,

(2.1) ke s
3"-) Crrt-1,2<r<n-1,n>3.

t=0

For example, (n,k) € {(4,8), (4,32), (4,64), (4,80);(5,10),(5,50), (5,130),
(5,210), (5,242)} [6, 7, 8, 9, 10, 11].

For a,b € Z with a < b, the set [a,b]z = {n € Z|a < n < b} is called
a digital interval [3]. We say that a k-path from z to y in X is a sequence
(x = 2o, 21,22, .., Tm—1,Zm = y) in X such that each point z; is k-adjacent
to z;41 for m > 1 and 4 € [1,m — 1]z [26]. The number m is called the length
of this path [23]. If £y = s, then the k-path is said to be closed k-curve [26].
For a space (X, k), two points z,y € X are k-connected [31] if there is a k-path
from z to y in X, and if any two points in X are k-connected, then X is called
k-connected. For an adjacency relation k, a simple k-path with m elements in
Z™ is assumed to be a sequence (ﬂfi)ie[o,m—uz C Z" such that z; and z; are
k-adjacent if and only if either j = i+ 1or ¢ = j+1 [26]. Furthermore, a simple
closed k-curve with [ elements in Z" is a k-sequence (Z:)ig[o,1—1), derived from
a simple k-curve (2;);e[o,1), With Zo = @1, where z; and z; are k-adjacent if and
onlyifj = i+1(mod l) ori = j+1 (mod I) [3] (see also [6, 7, 8, 9, 10, 11, 12]).
We denote by S C,?’l a simple closed k-curve with [ elements in Z™ [7, 18] (see
also [9, 10, 18]).

The following digital k-neighborhood has been used to define digital (ko, k1)-
continuity [8, 18] (see also [9, 10, 11, 12, 13, 14, 15, 16, 17)).

Definition 1 ([10, 18], see also [6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17]). For a
space (X, k) in Z" and £ € N, we say that the k-neighborhood of £y € X with
radius ¢ is the set

Nk(wo,e) = {.’IJ € XI lk(xo,x) < 8} U {(Eo},
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where [1 (2o, z) is the length of a shortest simple k-path from 2 to z in X.

Motivated by the digital continuity in [3, 31), the following characterizes
digital continuity in a fashion used later in the paper and plays an important
role in studying (ko, k1 )-covering theory {10, 12, 13] and digital k-curve and
closed k-surface theory [1, 3, 12, 13, 28, 29, 31].

Proposition 2.1 ([8, 18], see also [9, 10, 11, 12]). Let (X, ko) and (Y,k:)
be spaces in Z™ and Z™, respectively. A function f : X — Y is (ko,ki1)-
continuous if and only if for every zg € X,e € N, and Ny, (f(z0),¢) C Y, there
is 6 € N such that the corresponding Ny, (xo,8) C X satisfies f(Ni,(x0,8)) C
Nkl (f($0)75)'

The (ko, k1 )-continuity in Proposition 2.1 implies the digital (ko, k1 )-conti-
nuity in (3]. Furthermore, (ko, k; )-continuity has uniform continuity property
[13]: Let f : X = Y be a (ko, k1)-continuous map. Then, for every point
o € X, € € N, and N, (f(z0),) C Y, there is Ni,(zg,1) C X satisfying
f(Nio(zo,1)) C N, (f(z0),€). Consequently, by the uniform continuity of the
digital (ko, k1)-continuity in [13], we obtain the following.

Remark 2.2. [13] In Proposition 2.1, we may take § = 1 = ¢.

3. Digital k-graph theoretical methods in digital topology

In [19] (see also 11, 13, 21}), digital graph versions of the (kq, k1 )-continuity,
the (ko, &1)-homeomorphism, the (ko, k; )-covering, and the (ko, k1 -homotopy
in digital topology were developed. Let us introduce some necessary termi-
nology for digital k-graph theory. A digital graph G on Z™ is considered in
a quadruple (Z", k, k,G), where n € N, G is a digital graph depicted on Z",
k represents an adjacency relation for G [19]. Indeed, a space (X, k) can be
recognized to be a digital graph with k-adjacency called o digital k-graph [19].
In other words, we say that a digital k-graph is a graph on Z™ with k-adjacency
and write it as Gy = (Vi, Ei) consisting of both Vi and FEj which are the
sets of vertices and k-edges uv, respectively, where the k-edge uv is considered
in such a way: u € Ni(v) = {u|u is k-adjacent to v} and Ni(v) is the k-
neighbors of v in Z” [26]. Recently, in [19] (see also [11, 13]), for a space (X, k)
in Z™, motivated by the geometric realization of X C Z? in [4], the notion of
geometric realization of (X, k) was developed in Z",n > 3. The geometric re-
alization of (X, k) in Z™ is the simplicia] complex S(G) realized by the digital
k-graph Gy, derived from (X, k) (see (3.1)). Moreover, the paper [19] (see also
[11]) showed that a (ko, k1)-continuous map f : (X, ko) — (Y, k1) induces the
(ko, k1)-homomorphism G(f) : Gi, = G, characterizing the simplicial map
S(f) : S(Gry) = S(Gg,) [19]. Consequently, the following (3.1) shows the
process of the geometric realization in [11, 13, 19].

(3.1) (X, k) = Gr — S(Gy) :=|X|.
[X{:= S(Gk) in (3.1) is called the geometric realization of (X, k).
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Remark 3.1 ([19], see also [11, 13, 21]). A space (X, k) can be recognized to
be a digital k-graph Gy = (Vi,Ek) or a simplicial complex |X| := S(Gi)
geometrically realized by (X, k).

By Remark 3.1, we can represent a (ki, ko)-homoemeomorphism in [3] (see
also [8, 9, 10, 11, 12, 13, 14, 15, 16, 17]) from a digital k-graph theoretical point
of view, as follows.

Definition 2 ([19], see also [3, 11, 13, 21]). For two spaces (X, kg) in Z™ and
(Y,ky) in Z™, amap h : X = Y is called a (ko, k;)-isomorphism if h is a
(ko, k1)-continuous- bijection and further, h™! : ¥ — X is (k1, ko)-continuous.
Then, we use the notation X N(ko,k1) Y - If o = ny and kg = k;, then we call
it a ko-isomorphism and use the notation X =, Y.

In the following, by Remark 3.1, we obtain the following.

Remark 3.2 ([19], see also (11, 13, 21]). Since the digital graph theoretical ap-
proach is so convenient to study a space, hereafter, we use a (kg, k; )-isomorph-
ism instead of a (ko, ky )-homeomorphism.

By some properties of a (ko, k; )-isomorphism, we obtain the following.

Theorem 3.3 ([13]). If a (ko, k1)-isomorphism h: X — Y has h(Ny,(z,9)) =
Ni, (h(x),€) for some Ni,(x,8) C X, then§ =¢.

By Remarks 3.1 and 3.2, we may consider that the graph (kg, k; )-homotopy
in [19)] is equivalent to (ko, k1 )-homotopy in [3, 10, 11, 12, 13]. For (X, k), con-
sider a subset (4,%) C (X, k). In relation to the strong k-deformation retract
in [12, 21], motivated by the pointed (ko, k; )-homotopy in [3], the following no-
tion of (ko, k1)-homotopy relative to A was established in [9] (see also [12, 21]).
For a space (X,k) and a set A C X, we call ((X,A), k) a space pair with
k-adjacency. Furthermore, if A is a singleton set {zg}, then (X, zq) is called
a pointed space [3]. For a subspace (4,%) C (X, k), we obtain a discrete (or
digital) homotopy relative to A. Furthermore, the current notion of digital ho-
motopy relative to A can be used to establish a strong k-deformation retract
related to a k-homotopic thinning.

Definition 3 ([12, 13, 21]). Let (X, ko) and (Y, k;) be spaces in Z™ and Z™,
respectively, and A C X. Let f,g: X — Y be (ko, k1)-continuous functions.
Suppose that there exist m € N and a function F : X x [0, m]z — Y such that

o for all z € X, F(z,0) = f(z) and F(z,m) = g(z);

o for all z € X, the induced function F, : [0,m]z — Y defined by F,(t) =
F(z,t) is (2, k1 )-continuous for all ¢ € [0, m]z;

o for all £ € [0,m]g, the induced function F; : X — Y defined by Fi(z) =
F(z,t) is (ko, k1)-continuous for all z € X.

Then, F is called a (ko, k1 )-homotopy between f and g, and f and g are
(ko, k1)-homotopic in Y and further, we use the notation f ~(koky) 9 and
F o, g if ko = Ky
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¢ Furthermore, for all ¢t € [0, m]z, then the induced map F; on A is a constant
which is the prescribed function from A4 to Y. In other words, Fy(z) = f(x) =
g(z) for all z € A and for all ¢ € [0,m]z.
- Then, we call F' a (ko, k1)-homotopy relative to A between f and g, and we
say that f and g are (ko, k1 )-homotopic relative to A in Y. Besides, we use the
notation f ~(k, k1)rer.a 9-

Remark 3.4. In order to make the notion of (kg, k1)-homotopy relative to some
space (A, k) clear, the fourth bullet item in Definition 2 of [9] and Definition 1
of [12] was changed into the current fourth bullet item in Definition 3.

In particular, if A = {z¢} C X, then we say that F is a pointed (ko, k1)-
homotopy at {zo} [3]. If the identity map 1x is (k,k)-homotopic relative to
{zo} in X to a constant map with image consisting of some z, € X, then we say
that (X, zo) is pointed k-contractible [3]. Owing to the (3" — 1)-contractibility
of SCy:*, [17], we observe that the current k-contractibility is different from
the contractibility in Euclidean topology [3, 17, 18].

Motivated by the digital k-fundamental group in [23], the (digital) k-funda-
mental group was induced from the pointed (2, k)-homotopy in [3]. To be
specific, for a pointed space (X, zo), a k-loop based at zo is a (2, k)-continuous
function f : [0,m]z — X with f(0) = 2o = f(m). The number m depends on
the loop; different loops are allowed to have different digital interval domains.
More precisely, we compare the homotopy properties of loops whose domains
may have different cardinality. Namely, if m; < my, we can obtain a trivial
extension of a loop f : [0,m¢]z = X to aloop f':[0,mp)z — X in by

N G if 0<t<my
f(t)— {f(mf) if my StSmf/.

We have g € [f] if and only if there is a homotopy, holding the endpoints fixed,
between trivial extensions F,G of f, g, respectively [3]. Let F*(X,zo) = {f|f
is a k-loop based at x¢}. For members f : [0,m1]z = X, g : [0,mz]z = X in
F*(X, o), in (23], we obtain a map f % g : [0,m1 + m2]z — X given by

f*ﬂﬂ:{ £, 0<t<m;

gt —my), my <t<mg+ms.

The k-homotopy class of a pointed loop f is denoted by [f]. The Khamlim-
sky operation * preserves homotopy classes in the sense that if f1, f2,91,92 €
F*(X,x0), fi € [fo], and g1 € [g2], then fixgy € [faxg2], ie., [fixg1] = [foxge]
[3, 23]. Then,
ﬂ-k(Xawo) = {[f“f € Fk(X,.'L‘())}

is a group with the operation [f] - [g] = [f * g] [3, 23] which is called the
k-fundamental group of (X, x0) [3].

If zo and 21 belong to the same k-connected component of X, then 7 (X, z)
and 7#(X, z1) are isomorphic to each other [3]. Furthermore, it is shown that
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a (ko, k1)-isomorphism h : (X,z9) — (Y,y0) induces a digital fundamental
group isomorphism h, : 7% (X, 20) — %1 (Y, yo) defined by h.([f]) = [k o f]
for [f] € w*(X, o) [3]. It is clear that a (ko, k1)-isomorphism preserves the
pointed ko-contractibility to the pointed k;-contractibility. Also, it was proved
that if X is pointed k-contractible, then 7*(X,zg) is trivial [3]. Besides, a
k-connected space (X, k) is called simply k-connected if 7*(X) is trivial [18].

4. Strong k-deformation retract and k-homotopic thinning

As a generalization of a closed spline in Z3, let C}’ * be a closed k-curve with
I points in Z™. In this paper, we study C,';’l := (Ci)ig[o,1~1)z S a sequence such
that c¢; and c; are k-adjacent if j = i & 1(mod!l) and with a further condition
that for each i € [0,! — 1]z each of the index sets

(%) It.(3) = {t]es € Ni(ci, 1) C C,?’l} is consecutive modulo 1,

where Ni(c;, 1) is the k-neighborhood of ¢; with radius 1 in Definition 1. For
instance, consider the space X := (¢;)i¢[0,11), in Figure 1(a). Let us examine
the two points cs and c¢7, then we see that

18(2) = {1a273a7}a18(7) = {1’2’3767 778}

are not consecutive modulo 12. In this paper, such a kind of the space X in
Figure 1(a) will not be considered as a closed 8-curve in relation to Theorems
4.9 and 7.1, Remark 4.10, and so forth.

Example 4.1. The space in Figure 1(b) is a typical closed 8-curve instead of
a simple closed 8-curve.

€o <y
o — — e e— :
Co €3 C, C. C c c |
b Sy Sy %3 Oy W o
c c, c cy
ol g . g 10 3
‘ o ‘
C C4i
e St P
o o s Ce Cs
,,,,,, o - S
X “r
SR .,, ,,,,,,,,,,,,,,,,,,,

FIGURE 1. Configuration of C2'?
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Remark 4.2. In general, considering Cartesian products LS'C',?I‘J1 X S'C’,?;’l2 C
- ZMtn2 gnd C;’ll’ll x C,'c‘:’lz C Z™*™ with some k-adjacency of Z™ "2 we
always assume that SC,?],"’I" := (¢i)ie[o,1;—1] and C’,?j’"lj = (Ci)ig[o,1; 1]z Satisfy
the following: For each i € [0,1; — 1]z and j € {1,2}, each of the index sets

(4.1) It (i) = {t|e; € Ni(ci, 1)} is consecutive modulo 1,

where a k-adjacency of SC’,?;”I X SC,Z;”2 and C}} oy C;‘;’lz can be considered
and is determined by some number m with m € [max{mi,m2},n1 + na|z
via (CONx) and each number m; € N is taken from the k;-adjacency of
S’C,Z’"lj and C}’ Y via (CON«). In addition, if the number m > n;, then take
It (i) = I3»; _1 (1) in (4.1). In particular, we remind that the k-adjacency of this
product set is different from the compatible k-adjacency of a digital product
image in [18].

In [2], the notion of closed k-surface in Z* was established. Let us now
introduce some necessary terminology. A point x € X is called a k-corner if
z is k-adjacent to two and only two points 3, z € X such that y and z are
k-adjacent to each other [2]. The k-corner z is called simple if y, z are not
k-corners and if x is the only point k-adjacent to both y, z [2]. X is called
a generalized simple closed k-curve if what is obtained by removing all simple
k-corners of X is a simple closed k-curve [29]. For a k-connected digital image
(X, k) in Z*, we recall the following: |X|* := Nj(2) N X, Ni(z) = {2'|z and
z' are 26-adjacent} [2]. Thus we can restate | X |* := Nog(z,1) — {z} in Z* by
Definition 1.

Definition 4 ([2]). Let (X, k) be a k-connected digital image in Z",n = 3, and
X =7Z" - X. Then X is called a closed k-surface if it satisfies the following.

(1) In case that (k,k) € {(k,2n), (2n,3" — 1)}, where k # 3™ — 2" — 1, then

(a) for each point z € X, | X|* has exactly one k-component k-adjacent to
T3

(b) | X|* has exactly two k-components k-adjacent to x; we denote by C*#
and D*® these two components; and

(c) for any point y € Ni(x) N X, Nz(y) N C*® # ¢ and Ni(y) N D # ¢,
where Ni(x) means the k-neighbors of z.

Furthermore, if a closed k-surface X does not have a simple k-point, then
X is called simple.

(2) In case that (k, k) = (3" —2™ —1,2n), then for each point z € X, | X|® is
a generalized simple closed k-curve. Furthermore, if the image | X|® is a simple
closed k-curve, then the closed k-surface X is called simple.

Remark 4.3. (correcting of an example of a closed k-surface)

(1) As a generalization the digital k-surface in Definition 4, in [21], Definition
4 was stated for n € N with n > 3. Furthermore, in [21] (see Theorem 5.2),
it was asserted that a Cartesian product SC,?:’I1 X SC,?;’IZ is a simple closed
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k-surface in Z™*+"2 if m; = ms, where the k-adjacency of Z™ "2 is determined
by the number ms and (CONx), and m; is also determined by the k;-adjacency
of Z™ via (CONx), i € {1,2}. But, there is an error of the assertion because it
cannot satisfy the condition (1)(b). For instance, examine that SC2*® x SCZ'°
cannot be a closed 32-surface. Thus, in Theorem 5.2 in [21], Theorem 5.4 in
[20], and Example 2 in [12], Theorems 6.1 and 6.2 of [21], the terminology ‘a
closed k-surface’ should be corrected into a ¢ digital image’ (X, k).

(2) (correcting the (3"*"2 — 1)-adjacency in [12]) The paper [12] calculated
a3 -1 (scyt by SC,?:JQ) with a (3"1%"2 —1)-homotopic thinning and some
property of a digital covering map (see Theorems 2, 3, and 4 in [12]). Then, we
remind that for SC;{;lil = (€i)igfo,1;~-1)z>J € {1,2}, and each i € [0,1; — 1]z,
we assume that each I3~ _y (i) = {t|c; € N3n; _1(c;,1)} is consecutive modulo
l;.

The minimal simple closed k-curves in Z™,n > 2, are now investigated with
relation to the k-fundamental group, a k-isomorphism, and k-contractibility
(8,9, 10, 11, 12, 13]. For example, in Z? three types of minimal simple closed
curves, MSCy, MSCs, and M SCy are shown as follows [6, 7, 8, 9, 10, 11, 12],
where the minimal space means a space with the minimal cardinality in relation
to both the k-contractibility and the space containing the given digital image:
(1) Let MSCj be a set which is 4-isomorphic to the space,

42)  {(0,0),(1,0),(2,0),(2,1),(2,2),(1,2),(0,2), (0, 1)} := (as)iefo,7)z-
(2) Let MSCs be a set which is 8-isomorphic to the space,

(4.3) {(0,0),(1,-1),(2,-1),(3,0),(2,1), (1, 1)} := (b )icfo,5]-

(3 ) Let MSCj be a set which is 8-isomorphic to the space,

(4.4) {(0,0),(1,1),(0,2), (-1, -1)} == (ci)ie(0,3)2-

Indeed, while M SCs is not 8-contractible in [8, 9, 10, 11, 12], MSC, and M SC}
are 8-contractible in [3, 18] (see also [6, 7, 8, 9, 10, 11, 13]). Thus, we see the
following [3, 18]:

(4.5) (MSCy) and #®(MSCh) are trivial.

In order to classify spaces in Z™, the following notion of digital k-homotopy
equivalence was developed in [16].

Definition 5 ([16], see also [19, 21]). For two spaces (X, k) and (Y, k) in Z",
if there are k-continuous maps A : X = Y and ! : Y — X such that the
compositions loh ~p.p, 1x and hol ~. 1y, then the map h : X — Y is called
a k-homotopy equivalence. Then, we use the notation, X ~4.4.. Y.

By Remark 3.1, we can generalize the k-homotopy equivalence in [16], as
follows.
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Definition 6 ([19]). For two spaces (X, ko) in Z™ and (Y, k;) in Z™, if there
are both a (kg, k1)-continuous map h : X — Y and a (k;, ko)-continuous map
I:Y — X such that loh ~,p 1x and hol =~ ., 1y, then the map h :
X =Y is called a (ko, k1)-homotopy equivalence. Then, we use the notation,
X 4y k1)-hee Y. Besides, if ko = ky, then we use the notation, X ~,.h.e Y.

By the use of the minimal simple closed 4- and 8-curves in (4.2), (4.3), and
(4.4), we obtain the following,.

Cartesian products in Example 4.4 are considered as digital images instead
of closed k-surfaces in Z*.

Example 4.4 ([16, 20]). (1) A digital image M SCy x M SC, C Z* cannot be
8-homotopy equivalent to MSCg x MSCy C Z*.

(2) MSC{ x MSCy cannot be (k,32)-homotopy equivalent to MSCs x
MSCy, k € {8,32}.

In relation to a k-simple point [1], we need to introduce several terminologies
as follows. If (X, k) is finite in (Z",k, k, X), the infinite k-component of X is
the k-background. The other k-connected components of X are called the k-
cavities. The presence of a k-hole in X is detected whenever there is a closed
k-path in X that cannot be k-deformed in X to a simple path [28]. The notion
of k-deformation in relation to the k-hole is taken from [28]. For example, in
Z3 a solid k-torus has no k-cavities and one k-hole, a hollow k-torus has one
k-cavity and two k-holes [29].

Definition 7 ([1], see also [21]). A simple k-point in a space (X, k) C Z" is a
point 2 € X the deletion of which preserves the topology of the space X, i.e.,
there are bijections between the k-components, the k-cavities, the k-holes of X
and those of X — {z}, respectively.

For a space (X, k), a deleting process of a simple k-point of (X, k) is called
a k-thinning in [26]. In this paper, for C’,Z’ll not k-contractible, a k-homotopic

thinning algorithm for calculating the k-fundamental group of C,Z’ll is estab-

lished in terms of the deletion of simple k-curve points in C,?’ll. Let us now

state a simple k-curve point as follows. We again remind that each C’,f’l in this
paper is assumed to satisfy the above condition .

Definition 8. For C} ! we say that a point z € cy ! is a simple k-curve point
if it is a simple k-point in Cp'.

The deletion of simple k-curve points in C,?’l not k-contractible is called a
k-thinning of C,?’l [26]. We can easily see the following.

Theorem 4.5. A point ¢; € C',’:" = (Ci)igjo,m—1)z 5 @ simple k-curve point if
BNk (Cim1(modi)> 1) N Ni(Civ1(moarys 1)) > 3, where § means the cardinal number
of the set.
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Proof. For C’,'c"l := (€i)ig[0,m—1]» delete each point ¢; € C,?’l such that

BNk (Ci—1(mod1)> 1) N Ni(Cix1(modry, 1)) > 3.

Then, the remaining set

Cit = {cilB(Nk(ci_1(moary, 1) N Ni(Civ1(modry> 1)) > 3}

is obviously a simple closed k-curve in Z™. Thus this implies the proof of the
assertion. O

The current theorem will be used to write an algorithm for calculating the
k-fundamental group of a closed k-curve in Z” (see Section 9). Consider the
space in Figure 1(b). Then, we see that the point cs is a simple 18-curve point
in G212,

Suppose that (X, A) is a space pair with k-adjacency and i : 4 — X is the
inclusion map, A is called a k-retract of X if and only if there is a k-continuous
map r: X — A such that r(a) = a for all @ € A [3]. Then, the map r is called
a k-retraction of X onto A. While the paper [15] referred to a k-deformation,
the presentation of the notion was insufficient. The correct one is the following.

Definition 9 ([21], correcting of the (strong) k-deformation in [15]). For a
space pair ((X,A),k), A is said to be a strong k-deformation retract of X if
there is a k-retraction r of X onto A such that F :ior ~rrelA 1x.

Then, a point z € X — A is called strong k-deformation retractable.

In view of Definition 9, Theorem 3 in [15] should be represented as follows.

Theorem 4.6 ([12, 15, 21]). If (4,x,) is a strong k-deformation retract of
(X, x0), then (X, zq) is isomorphic to (A, zo).

Definition 10 ([21]). For a space (X, k), we can delete strong k-deformation
retractable points from X. This processing is called a k-homotopic thinning.

Example 4.7. See the space Y in Figure 2 in Section 8. Then, the space
{ao,a4,as, ag,ar,as} := Z in Figure 2 is an 8-homotopic thinning space from
Y (see Remark 4.12).

Remark 4.8. A k-homotopic thinning is different from a k-thinning. Precisely, a
k-homotopic thinning implies a k-thinning (see Figure 1(a)). But, the converse
need not hold.

The current notion of strong k-deformation retract can be used to calculate
the k-fundamental group of a space (X, k) in Z" (see Theorems 7.1 and 8.4)
and further, to write an algorithm for calculating the k-fundamental group in
Section 8.

Theorem 4.9. For C'"* not k-contractible, SCH c Ot with 1 < 1y is
obtained by a k-homotopic thinning.
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Proof. Obviously, each simple k-curve point can be deleted from C',?’ll by a
k-homotopic thinning. Furthermore, by the processing we see that C} d_
{cilci is a simple k-curve point} is a strong k-deformation retract of C,':’l‘. (]

Example 4.10. (1) Consider the set X in Figure 1(a). Then, the set {c2, ¢4,
¢10} can be deleted in terms of an 8-thinning from the space X.

(2) In Figure 1(b), C2'? is 8-thinned to be SC3'*! = 212 _{¢5} by deleting
the point cs.

Remark 4.11. For C’,?’l1 not k-contractible, the complete k-thinning space can
be k-isomorphic to the k-homoatopic thinning space (see Remarks 4.12 and 5.6).

We observe the difference between a k-thinning and a k-homotopic thinning
as follows.

Remark 4.12. By Example 4.10(1) we see that the space X in Figure 1(a) can
be 8-thinned to be a space X — {c2,¢4,¢10}-

Meanwhile, doing an &-homotopic thinning of the space X in Figure 1(a),
we obtain a space A := {cg,¢1,¢7,08,¢0,¢11} g MSCs: Consider a map H :
X x[0,3]z —» X in such a way:

First, H(c;,0) = ¢;, for any ¢; € X,i € [0,11]z;

SeCOIld, H(Clo, 1) = Cg, H(C4, 1) = Cs, H(CQ, 1) = c7, H(Ci, 1) = Ci,i €
{07 11}2 - {27 47 1O}r

Thil‘d, H(Clo, 2) = (g, H(C4, 2): H(C5, 2):66, H(Cz, 2) = H(Cg, 2) =C7,
H(c;, 2) =c;, 1 € [0, 11]Z - {2, 3,4,5, 10},

Finally1 H(ci7 3) =c7,i € {27 3, 47 5; 6, 7}7 H(cl(], 3) = Cg, H(Cj, 3) = Cj,j €
{07 1; 87 9; 11}

Then, we see the map H is an (8,8)-homotopy relative to A, where A =
{co,c1,07,08, 00,021 ~g MSCs. Concretely, we see that A is a strong 8-
deformation retract of X. Consequently, doing an 8-homotopic thinning of
X in Figure 1(a), we obtain the space A ~g MSCs. Fourth, we see that
78(X, ¢7) is isomorphic to 78(A4, ¢;) by Theorem 4.6. Meanwhile, for the space
in Figure 1(b), an 8-thinning space can be equal to an 8-homotopic thinning
space, which is related to the algorithm for the calculation of the k-fundamental
group of C;"' in Section 9.

For a space (X, k), proceeding X with a k-homotopic thinning, we calculate
the k-fundamental group of a space (X, k). We now recall some properties of
a (kg, k1 )-isomorphism as follows.

Theorem 4.13 ([17)). (1) If h : X = Y is a (ko, k1)-isomorphism, then
X —~ {p} ®Rko,ky) Y ~ {h(p)} for any point p € X.

(2) Leth: X =Y be a (ko, k1)-isomorphism. For any subspace of Xo C X, the
restriction map h on Xy, briefly h|x, : Xo = h(Xo), is a (ko, k1)-isomorphism.
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5. Strongly local (kg, k1)-isomorphism in relation to the
k-fundamental group

In this section, motivated by a local (kg, k1 )-homeomorphism in [6], a strong-
ly local (kqg, k1)-isomorphism is presented from a digital k-graph theoretical
point of view and studied in relation to the digital k-fundamental group.

Definition 11 ([6], see also [13]). For two spaces (X, ko) in Z™ and (Y, k1)
in Z™, a (ko, k1 )-continuous map h : X — Y is called a strongly local (ko, k1)-
isomorphism if for any = € X, h maps Ny, (z,1) (ko, k1)-isomorphically onto
Ni, (h(z),1) CY. If ny = ny and ko = k1, then the map h is called a strongly
local kg-isomorphism.

Example 5.1 ([6]). Amap f: NU{0} = MSCjy defined by f(i) = bi(mod 6) €
MSCjs in (4.3) is not a strongly local (2, 8)-isomorphism.

Proof. At the point 0 € N U {0}, a strongly local (2, 8)-isomorphism is invalid.
O

By Example 5.1, we obtain the following: For spaces (X, ko) in Z™° and
(Y k1) in 2™, if amap h: X — Y is a (ko, k1)-isomorphism, then the map A
is a strongly local (ko, k1)-isomorphism. But the converse does not hold.

Theorem 5.2 ([6]). Let (X, ko) and (Y, k1) be spaces in Z™ and Z™ , respec-
tively. A map f: X =Y is a strongly local (ko, k1 )-isomorphic bijection if and
only if f is a (ko, ky)-isomorphism.

Theorem 5.3. The composition of strongly local isomorphisms is also a strong-
ly local isomorphism.

Proof. If f : X = Y is a strongly local (kg, k1 )-isomorphism and g : ¥V — Z
is a local (k1, k2)-isomorphism, then go f : X — Z is a strongly local (ko, k2)-
isomorphism. O

A strongly local (ko, k1)-isomorphism can be used to investigate some local
properties of a space in relation to the preservation of a simple kp-curve point
into a simple k;-curve point and a generalized simple closed k;-curve, i € {0,1}.

Example 5.4. Consider a map f : [0,3]z — MSC} defined by f(i) = ¢; €
MSCy in (4.4). Then, while the map f is a (2, 8)-continuous injection, it is not
a strongly local (2, 8)-isomorphism owing to the invalidity of a strongly local
(2, 8)-isomorphism at the points 0 and 3.

Example 5.5. Consider a map g : MSCy — M SCj given by g(a;) = Ci(mod 4)
€ MSCy in (4.2) and (4.4). Then, the map g is a strongly local (4,8)-
isomorphism. While the map g is (4, 8)-continuous, it is not injective.

By Examples 5.4 and 5.5 we can observe that the comparison between a
strongly local (ko, k1 )-isomorphism and a (ko, k; )-continuous injection cannot
be successful.
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While a (ko, k1)-isomorphism h : (X,z0) — (Y,yo) preserves the ko-funda-
mental group into the k;-fundamental group under an isomorphism [3, 18],
a strongly local (ko, k1)-isomorphism does not have the property. Precisely,
a strongly local (ko, k1 )-isomorphism need not preserve the kp-fundamental
group into the k;-fundamental group under an isomorphism. To be specific,
let us consider the following: For the unit lattice square X in 72, ie, X =
{bo, b1, b2, b3} and each b; is 4-adjacent just only t0 b(;y1)mod 4 and b(;_1)mod 4
and further, assume M SCy = (ai)icjo,7), in (4.2). Then, a map p: MSCy —
X, is assumed in the counter-clockwise direction with an initial point by such
that p(a;) = bi(mod 4) is a strongly local 4-isomorphism. While 74 (M SCy, ag)
is not trivial [18], 7*(X1, bo) is trivial. More precisely, there is the 4-homotopy
on X; such that 1x, ~4 Clbo} :

Consider the map H : X x [0,2]z — X; in such a way:

First, H(b;,0) = b;, for any b; € X1,i € [0, 3]z;

Second, H(by,1) = H(by,1) = by, H(b3,1) = H(bo,1) = bo; Finally, H(b;,2)
= by, for any b; € X1, € [0, 3]z.

Then, we see the map H is a (4, 4)-homotopy relative to A, where A = {bo}.
Thus, it turns out that X; is 4-contractible so that 7*(X1, bo) is isomorphic to
74 ({bo}, bo) which is trivial, as required.

Remark 5.6. (1) It turns out that the above space X; is 4-homotopically
thinned to be a singleton {bp}. Meanwhile, doing a 4-thinning of the space
X1, we still have X itself because there is no simple 4-curve point on Xj.

(2) While M SC" is 8-homotopically thinned to be a singleton {co}, MSC' is
8-thinned to be the space M SC’ itself because there is no strong 8-deformation
retractable point in M SC".

6. Some properties of a digital (ko, k1)-covering

A k-fundamental group of some space has been used to classify spaces in
relation to the k-connectivity and a k-homotopic invariant. Furthermore, the
notion of digital (ko, k;)-covering is also helpful to discriminate spaces and to
calculate the digital fundamental group of some space. A digital version of a
covering space in algebraic topology in [30] was shown in [10, 18].

By Theorem 3.3 and some properties of a (ko, k1)-isomorphism, we obtain
the following.

Lemma 6.1. For two spaces (X, ko) in Z™ and (Y, k1) in Z™, if a (ko, k1)-
continuous map h: X = Y has f(Ni,(x,6)) =k, Nk, (h(z),€), then we see that
d=¢e.

By the axiom for the (kq, k1 )-covering in [10, 18], Remark 2.2 and Lemma 6.1,
we obtain the following which is equivalent version of a digital (ko, k1)-covering
(10, 18] and is used later in this paper. Each space (X, k) in Definition 12 is
assumed to be k-connected.
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Definition 12 ([12], see also [12, 13, 16, 19, 21]). Let (E, ko) and (B, k1) be
spaces. Let p: E — B be a (ko, k1 )-continuous surjection. Suppose, for any
b € B, there exists ¢ € N such that

(C1) for some index set M,

P (Ni, (b,€)) = Uicpr Ny, (€5, €) with e; € p~1(b);

(C2) if 4,5 € M and i # j, then Ng,(e;,€) N Ni,(ej,€) = 0; and

(C3) the restriction map Plweg(eie) * Nioleirse) = Niy(b,¢) is a (ko, k1)-
isomorphism for all 1 € M.

Then, we call the map p : E — B a (ko, k1)-covering map and (E, p, B) is said
to be a (ko, k1)-covering. Furthermore, a (kg, k1 )-covering map p : (E,eq) —
(B, bo) is called a pointed one if p(ep) = bo.

The collection { Ny, (e;,€)]i € M} is called a partition of p~!(Ng, (b,¢)) into
slices. Furthermore, the above k;-neighborhood Ny, (b, ) is called an elemen-
tary ki-neighborhood of b with radius € [12, 13, 19, 21]. Hereafter, we briefly
use the terminology (ko, k1)-covering instead of digital (ko, k1 )-covering.

For example, for a simple closed k-curve with ! elements

SC/?’I = (C)eefo,-1]2>

(Z,p, SC,';’I) is a (2, k)-covering, where the map p : Z — SC,’:’I is given by
P(t) = Ce(moary for any t € Z [10, 12, 13].

Definition 13 ([10]). A (ko, k1)-covering (E, p, B) is called a radius n-(ko, k1 )-
covering if ¢ > n in Definition 12.

By Remark 2.2 and Theorem 5.2, we obtain the following.

Remark 6.2 ([12], see also [13, 21]). In the (ko, k;)-covering of Definition 12,
we may take ¢ = 1. But, for the study of Lemma 6.4 and Theorem 7.1 and
various digital topological properties in Sections 6, 7, and 8, we take € € N in
Definition 12 according to the situation.

Definition 14 ([10, 12, 13, 18]). For three spaces (E, ko) in Z™, (B, k) in
Z™, and (X, ky) in Z™, let p: E — B be a (ko, k; )-continuous map. For a
(K2, k1)-continuous map f from X into B, we say that a digital lifting of f is a,
(kq, ko)-continuous map f : X = E such that pof=f.

Lemma 6.3 ([10, 18], see also [12, 13, 21]). For pointed spaces ((E,ey), ko)
in Z™ and ((B,by), k1) in Z™, let p : (E,e9) = (B,bo) be a pointed (ko, k;)-
covering map. FEvery k; -pgth f 1 [0,m]z — B beginning at by has a unique
digital lifting to a ko-path f in E beginning at eg.

The following digital homotopy lifting theorem was introduced in [10].
Lemma 6.4 ([10], see also [10, 13, 21]). Let (E, ko) be a space and eq € E.
Let (B, k1) be a space and by € B. Let p: (E,ep) = (B, bg) be a pointed radius

2-(ko, k1)-covering map. For ko-paths go, g1 in (E,eq) that start at eq, if there
is a k1-homotopy in B from po gy to po g1 that holds the endpoints fixed, then
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go and g, have the same terminal point, and there is a ko-homotopy in E from
go to gy that holds the endpoints fized.

Lemma 6.4 will be often used in Sections 7, 8, and 9.

Definition 15 ([18]). A pointed k-connected space (X, zq) is called simply
k-connected if 7%(X, z0) is a trivial group.

Theorem 6.5. Let p1 : (E1,e1) = (B,bg) be a pointed (ky, ko)-covering map
and py : (Eg,e2) — (B,by) be a pointed (ko, ko)-covering map. If there is a
pointed (ky, ks)-continuous map ¢ : (Ev1,e;) — (Ea,e2) such that py o ¢ = py,
then the map ¢ is a pointed (ky, ks)-covering map.

Proof. (Step 1): We prove that the map ¢ is a (ky, k2)-continuous surjection.
For any y € E,, we must show that there is a point ¢ € E; such that ¢(z) = y.
Choose a kz-path f : [0,m1]z — F» such that f(0) = e» and f(m;) = y and
let g = py o f in B with the initial point by. By Lemma 6.3, there is a unique
ki-path h : [0,m1]z = E; with h(0) = e; as the lifting of g such that pjoh = g.
Let « be the terminal point of h. Then, both the ky-paths ¢ o h and f have
the same initial point e; by the hypothesis of ¢, and ppogpoh =g = ps o f.
Hence, by Lemma 6.3 ¢ o h = f, we obtain ¢(z) = y.

Next, we remind the (ki, k2)-continuity of ¢. By Remark 6.2, for any point
e5 € By and Ny, (eh,1) C E,, we now find some &;-neighborhood Ny, (ef,1) C
Ey such that ¢(Ng,(e],1)) C Ni,(¢(e),1), where eb = ¢(e}). Precisely, for
any element e}, € E3, consider py(e}) := b € B. Furthermore, take p;*(b) :=
el € £y and Ny, (6,1) such that

p?(Nkz (6127 1)) Rko Nko (b7 1)

which is an elementary ko-neighborhood of b by the (k,, ko)-covering map
p2- Thus, for N, (€5, 1) € py!(Ny,(b,1)), since p; o ¢ = p;, we take some
Ni, (€},1) € p; 1 (Nio (b, 1)) such that ¢(Ny, (€}, 1)) = Ni, (), 1), as required.

(Step 2): For each e}, € E,, we prove the existence of an elementary k,-
neighborhood of ¢} for the (ki, k2)-covering (E1, ¢, E2). Precisely, for the point
ey € E,, take py(eh) = b. Then, there is an elementary ko-neighborhood
of b, Ni,(b,1), of both the (ka, ko)-covering map p» and the (k1, ko)-covering
map p;. Thus, there is the set {EZ |a; € M} as a partition of p; ' (Nk, (b, 1))
such that E2 NE; = 0if o; # o; € M and p2lpz, @ B, — Ni(b1) is
a (ka, ko)-isomorphism. Similarly, we can take a partition of p;*(Ny,(b,1)),
{EL,|a; € M}. Then, choose the ko-neighborhood Ni,(b,1) and further, we
obtain the set EZ. containing €} and put

EZ, Npy ' (Niy(b,1)) = Ua,.

Then, U,, is obviously an elementary ks-neighborhood of €} for the (k;, k»)-
covering map ¢ with the partition of ¢~ (U,,), as required. O

The paper [13] established the generalization of the digital lifting theorem
for a pointed (ks, k1)-continuous map, f : (X, zo) — (B, by) as follows.
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Theorem 6.6 ([13], Generalized digital lifting theorem). Let ((E, eo), ko) and
((B,bg), k1) be pointed spaces in Z™ and Z™ , respectively, and let (X, zo), k2)
be a pointed ky-connected space in Z™2. Let p: (E,eq) — (B,by) be a pointed
radius 2-(ko, ky)-covering map. Given a pointed (k2, ky)-continuous map f :
(X,z0) = (B, bo), there is a pointed digital lifting f : (X, o) — (E, eg) if and
only if f* (7rk2 (X) .’Eo)) C P« (ﬂ—ko (E; e0))‘

By Theorems 6.5 and 6.6, we obtain the following.

Corollary 6.7. Let p; : (Ei,e1) = (B,by) be a pointed (ki,ko)-covering
map and ps : (Ea,e2) — (B,bo) be a pointed radius 2-(ks, ko)-covering map,
If (D)« (7 (B, e1)) C (p2) * (n*2 (B2, e2)), then there is a pointed (ki,ko)-
covering map ¢ : (Ey,e1) = (Fs,e2) such that pyod = p.

7. Calculation of the k-fundamental group of a closed k-curve in Z"

n,ly

In this section, we calculate the k-fundamental group of C;"* not k-contrac-
tible in terms of a strong k-deformation retract and some properties of a digital
covering. In [18], we proved that 78(M SCs) is isomorphic to an infinite cyclic
group, precisely (6Z,+) (although, it should be noted the usage of Lemma 6.4
for the proof in [18]). Thus, we need to prove the general case of 7®(M SCs)
as follows.

Theorem 7.1. For a closed k-curve C,?’“ = (¢t)tef0,1-1]z not k-contractible,
7k (C’,’;’ll,(:g) is isomorphic to an infinite cyclic group, precisely (IZ,+), where
l = l,— the cardinal number of the set of simple k-curve points in C’,;"ll and
the point co is not a simple k-curve point.

Before we prove Theorem 7.1, we show the need for the assumption of the
non-k-contractibility of C}’ ' Let us consider the space M SCy in (4.4). Since
78(MSC}) is trivial by (4.5), MSC} does not satisfy the hypothesis of the non-
k-contractibility of C;»'*. Besides, since a (2, 8)-covering map p: Z — M S5C}
given by p(t) = Cy(mod 4) is N0t a radius 2-(2, 8)-covering map, which cannot
use Lemma 6.4 to assert Theorem 7.1. Thus, the hypothesis of the non-k-
contractibility of C’Z’ll should be required.

Proof. With the hypothesis, by Theorem 4.9, the space SC',?’I is taken from
CZ’ll by the strong k-deformation retract of C It with [ < I1. Furthermore, by
Theorem 4.6, 7*(C", ¢o) is isomorphic to T*(SC™M"  ¢p). Let us now prove
this theorem more precisely.

(Step 1) Let H: CZ”‘ x [0,m]z = C,’:”‘ be a strong k-deformation of C’;"l‘
onto SC}; i In other words, the k-homotopy H is considered in such a way
(see also Theorem 3.2 in [21)):

(1) H(z,0) = z for all € C}"

(2) H(z,m) € SC;"' for all z € Ccph, and

(3) Hi : X = X,t € [0,m]g, is (k, k)-continuous
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(4) for all ¢ € CP1 | Hy(x) : [0,m]z — X is (2, k)-continuous map, and

(5) H(a,t) =afor all a € SCZ’l and for all t € [0, m]z.

Then, let r : Cp'* — SC,?’I be defined in such a way that (i o r)(z) =
H(z,m), z € C,?’ll. Then, H makes 102,11 be k-homotopic relative to SC,?’I

to i or (see Theorem 4.9). Thus, for any [g] € ﬂ'k(C’:’ll,Cg), there is a k-path
f € F*(SCM,c) and a set of k-paths {g,g2,...,9m} C F¥(CP" ¢o) such
that f ~ g1,9i ~r giy1 for i € {1,2,...,m — 1} and gn, ~ g, Where * =’
means a k-homotopy relative to SC,':’Z. Consequently, 7*(r)([g]) = [f]. By
the same method above, for any 7*(r)([g1]) = 7*(r)([g2]) € 7*(SCp*",¢p), we
obtain that g > . gome g2 and finally, [g1] = [go], which 7*(r) is injective.

Next, for the k-retraction r : (CP'",co) = (SC,co) such that roi =
1(502,1’00) and the inclusion map 4 : (SC:l,Co) - (C"’ll,c()) (see Theorem
4.9), 7*(r) and 7*(i) are homomorphisms. Then, *(r 0 i) = 7*(r) o 7*(i) =
Ligserty)- Thus, 7®(r) is surjective. Therefore, 7(r) is an group isomor-
phism.

(Step 2) For the space‘SC"J = (¢¢)¢efo,1—1], not k-contractible, we may
choose a base point ¢y € SC;!, and a pointed (2, k)-covering map p : (Z,0) —
(scy ! co) with p(t) = Ci(mod1)- As a generalization of 74 (M SCy) ~ (8Z,+) in
[18], we obtain that wk(SC,?’l, cp) is isomorphic to a cyclic group, i.e., (1Z,4).
Precisely, for [f] € 7*(SCp"', ¢o), take f € F*(SCM, ¢o) such that f : [0,my]z
— (SC,’:’I, co) with f(0) = f(mys) = co, where the number m; is some natural
number. For any f, f; € Fk(SC’,?’l,co) such that f ~; fi1, by Lemma 6.3 there
are uniquely liftings f of f and fl of f1 such that pf = f, pfi = f1, respectively.
Furthermore, for the 2-paths f f1 in Z which have the same initial point 0, if
pf ~ pfiin (SCk ,¢o) and pf and pf1 end at the same point co, then f ~ fi
by Lemma 6.4 and further, f and f1 have the same terminal by Lemma 6.4.
Consequently, any k-path [ in (SC ,co) beginning at ¢o has a unique digital
lifting to 2-path f : [0,mf]z — Z beginning at 0. Moreover, the point f (my)
must be a point of the set p~!(cy) = IZ by Lemma 6.4. This integer depends on
the k-homotopy class of f. Therefore, we can define ® : 7%(S C,?’l, co) = (IZ,+)
by letting ®([f]) = f(my) € p~"(co) = IZ and it is well-defined.

We now assert that ® is an isomorphism. We prove that the map @ is
surjective. For any In € Z, because Z is 2-connected [18], we can choose a 2-
path f:[0,my]z — Z from 0 to In. Define f = po f. Then, f € Fk(SCZ’l,CQ)
and f is its lifting in Z beginning at 0 and ending at In. Then, f(m;) € p~'(co).
Thus, by Lemma 6.4, we get ®[f] € IZ.

Next, we prove that the map ® is inJective Assume that ®([f]) = ®([g]) €
IZ; let us verify that [f] = [g] € 7r’“(SCk ,co)- For a (2, k)-covering map p :
(Z,0) - (SC,?’I, co), by Lemma 6.3, let f, § be the liftings of £, g, respectively.



1498 SANG-EON HAN

Then, the two 2-paths f, g on Z begin at 0, and both f and g end at Im € lZ.
Because Z is simply 2-connected and f and § are 2-path homotopic keeping the
end points fixed by Lemma 6.4. Let F : [0,Im]z x [0,m1]z be the 2-homotopy
between f and g for some m,m; € Z. Then, the map F = po F will be a
k-homotopy between f and g keeping the endpoints fixed. Thus, [f] = [g], as
required.

Let us prove that the map & is a homomorphism. For any | fl, lg] €
wk(SC,:l’l,co), let f, g€ Fk(SC:’l,Co) such that

f:10,mslz — SC* with £(0) = co = f(my),

g:[0,mylz — SC,?’I with g(0) = ¢o = g(my).

Let f and § be the digital liftings of f and g to 2-paths on Z beginning at 0,
respectively. Furthermore, f (my) = lm and §(m,) = In. Let us define a path
h on Z by the equations:

hs) F(s), 0<s<my,
s) =
Im+g(s—my), my <s<my+m,.
Then, h is also a 2-path on Z beginning at 0. We assert that A is a digital

lifting of f * g, where * means the Khalimsky operation. For any s, we have
p(lm + s) = p(s). Besides,

p(f(s)) = £(s), 0<s<my,
p(h(s)) =9 p(Im+ g(s —my))
=p(G(s —my)) = g(s —my), my <s<ms+my.
Thus, po h = f * g such that h is the digital lifting of f * g which begins at 0.

®([f *g]) is h(ms +my) which equals Im+In. Then, ®([f-g]) = ®([f])+2([g]).
Therefore, the proof is completed via Steps 1 and 2. O

As a special case of Theorem 7.1 and a general case of both 74(M SCy) and
78(MSCs) in [18], we obtain the following.

Corollary 7.2 ([12, 13)). T&'k(SC,?’l,CO) is isomorphic to an infinite cyclic
group, precisely (1Z,+), if SC’,?’I is not k-contractible.

8. k-fundamental group of a wedge product of closed k-curves

The k-fundamental group of a wedge product of the spaces is calculated
in terms of the k-homotopy, the k-contractibility, and the digital covering in
[10, 13, 21]. We now recall the wedge product of disjoint discrete spaces (X, ks)
in Z™, 4 € {0,1}. For spaces (X, k) and (Y, k), a wedge product of X and Y
is presented as follows: We assume that X VY is the disjoint union of X and
Y with only a base point in common and any two elements z € X c X VY
andy € Y C X VY are not k-adjacent each other except the only the common
point in X VY [18].
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Definition 16 ([18]). For two disjoint spaces (X, ko) in Z™ and (Y, k;) in
Z™, and a subspace {20} C X, let f : {zo} = Y be a map. Then, we
assume that X VY, called a wedge product of X and Y, is the disjoint union
of X and Y with the only one point y9 = f(zo) in common and further,
((X VY,y0), k) assumed with k-adjacency in Z", the number k is determined
by the number m via (CONx), where n = max{no,n:}, m = max{mg, m;}
and m; is taken from the k;-adjacency via (CONx), i € {0,1}. And any two
elements x(# zo) € X C XVY and y(# f(z0)) € Y C X VY are not k-adjacent
to each other except the only one point f(zg) =gyo€ X VY.

Remark 8.1. In view of Definition 16, both (C} iy C:;’l"",c()) and (.S'C,?ll’l1 v
SC,?:’lz, ¢g) can be considered with the k-adjacency determined by the number
m = max{mg,m1} and m; is taken from the k;-adjacency via (CON%), i €
{0,1}. Then, we always assume that for C’,Z?’lj = (Ci)iefol;-1]z>J € {1,2},
each Ij(i) ={t|c; € Ni(c;,1)} is consecutive modulo I;,i € [0,1; — 1]z.

Example 8.2. (SC¥%" v SC2, %) should be considered with 26-adjacency in
z3.

We now study the k-fundamental group of a wedge product. Precisely, for
the spaces M SC4 and M SCjs in (4.2) and (4.3), we obtain their wedge products
as follows. (MSCs vV MSCs,(0,0)) and (MSCyV MSCy,(0,0)) in [18].

We now recall the notion of the free group with n generators [30]. Let
A={a1,a,...,a,} U{a;,a;",...,a;"} be aset of alphabets with 2n distinct
letters, and let W,, be the set of all words over the set A. We say that two
words w,w’ € W, are the same up to an elementary simplification in [28] if,
either w can be obtained from w’ by inserting in w' a sequence of the form
a,-a;“l, i € [1,m]z, or w' can be obtained from w by inserting in w a sequence
of the form a; 'a; with i € [1,n]z. Now two words w,w’ € W, are said to be
free equivalent if there is a finite sequence w = wy, ..., w' = w, of words of W,
such that for ¢ = 2,..., k the word w;_; and w; are the same to an elementary
simplification. This defines an equivalence relation. If w € W,,, we denote by
[w] the equivalence class of w under the current equivalence relation on W,,.
The concatenation of words defines an operation on F,, = {[w]jw € W,,} which
provides F,, with a group structure. The group is called the free group with n
generators [30].

As a generalization of the 4-fundamental group of the calculation of

7T4(MSC4 vV MSC4,00)
which is a free group with order two. Precisely, 7*(MSCy V MSCy,c) is

isomorphic to the free group 8Z % 8Z in [18]. Indeed, M SCy vV MSC, has
countably many (2n,4)-covering spaces in Z",n € N.
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Theorem 8.3. For two simple closed k-curves SC:’li,i € {1,2} which is not
k-contractible, the group m*(SC} o VSC,?’h,co) is a free group with order two.
Precisely, ﬁk(SC,zL’ll \% SC,?’IQ,CO) is isomorphic to a free group WZ x I, 7.

From above, we obtain the following by Theorem 4.9 and an analog of Ex-
ample 4.10.

Theorem 8.4. For two closed k-curve C,?’l" not k-contractible, i € {1,2}, the
group 7r’°(C’,Z’l1 v C,';’lz,cﬂ) is not abelian. To be specific, 71"“(0,?’11 v C,’;’b,co)
is a free group with two generators from each of the cyclic groups I\Z and I,Z,
where I; = l;— the cardinal number of the set of the simple k-curve points in
CPY i € {1,2}, where co is not a simple k-curve point in C,f’l".

Before we prove Theorem 8.4, we need to show the assumption that Cp"
not k-contractible, ¢ € {1,2}. If not, consider the following wedge product
MSCsVv MSCy. Then, since M SC} is 8-contractible in (4.5), M SCs is a strong
8-deformation retract of MSCs vV M SC§. Thus, we obtain that 78(MSCs v
M SCy) is isomorphic to an infinite cyclic group, precisely (6Z, +) (see the space
Y in Figure 2). Thus, if we omit the assumption that C:’li is not k-contractible,
then Theorem 8.4 may fail.

Proof. Since C;""* V" can be k-homotopically thinned to be SCJ hyg C,?’llz
by Theorem 4.9 and Remark 4.12, where I} = [;— the number of the simple
k-curve points in C,’:’l‘ and ¢ € {1,2}. By Theorem 7.1 and 8.3, and Corollary

7.2 the proof is completed, as required. 0
a SLa 4l a! a 5 dy
a a a a
* 6 T J , (11 0
I ay +—+ |
3, |as B 3 |as

Y ———=> 7Z
FIGURE 2. 8-homotopic thinning
Theorem 8.5. Consider C,':ll’ll v 0322712 with k-adjacency. Then, =*(C}? oy

C’;’;’lz,co) is not abelian, where both {co} V C,?;’l2 C (C’,’;ll’l1 % C,Z;’lz,co) and
C,:‘ll’ll Vi{e} C (C,Z? h VC’,?;J?, o) are not k-contractible. Precisely, ﬂk(C,zlll’ll \%
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C,’;;’b,co) is a free group with two generators from each of the cyclic groups l{Z
and I5Z, where I} = l;— the cardinal number of the set of the simple k-curve
points in C,Z"l‘, where o is not a simple k-curve point in C,?’l".

9. An algorithm for the calculation of the k-fundamental group of a
closed k-curve

For C,’:’ll := (ct)ee[o,1, —1]z NOt k-contractible and satisfying the condition ¥
in Section 4, a k-homotopic thinning algorithm for calculating the k-fundament-
al group of the space C:’ll can be established by Theorems 4.9 and 7.1, and
Remarks 4.12 and 5.6, as follows.

In general, a k-thinning algorithm of C,?’ll not k-contractible can be pro-
ceeded as follows.

(1) while n-xels are detected

(2) detect the simple k-curve points

(3) delete simple k-curve points sequentially from the one near to some
non-simple k-curve point.

Consequently, we obtain an algorithm for calculating the k-fundamental
group of C,?’l‘ not k-contractible motivated by Remark 4.12 and Theorem 7.1.

[An algorithm for calculating ¢ (C’,?’l1 ,C0), Where the point ¢ is not
a simple k-curve point]

For every n-xels in Cp''" := (¢i)ig[0,1: 1]z DOt k-contractible {

detect Ni(c;, 1)

let ¢ be one of the elements such that
ﬁ(Nk(cm—l(modll)a ]-) N Nk(cm+1(modl1))7 ]-) =1
put m the selected number
arrange C/?’ll with {CIO = Cm(modly)» c_![ = Cm+1(modly)> C’2 = Cm+2(modly)> " }
for G=1i<li—1;i4++){
detect Ny(
detect Nk(c;+1(modll)’ 1)
8 VE (1 (mod 1) 1) N Ne(Crpy (modiyy> 1)) 2 3
then delete ¢} in C[""

C;—l(modll)’ 1)

}

let I be the number of the elements in C:’ll.

Then, we consider IZ to be the k-fundamental group of C;* from Theorem
7.1 and Corollary 7.2.
Remark 9.1. Let us examine the above algorithm in terms of the calculation
of 78(C5'?,¢cp) in Figure 1(b). Then, we can arrange the space ci? .=
(¢i)igfo,11), SO that it is 8-homotopically thinned to be SC’g’11 by Remark
5.6(2). Consequently, we obtain that 783(C2'?, ¢o) ~ #3(SCE', ¢o) ~ 11Z
by Theorems 4.9 and 7.1, and Corollary 7.2.
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10. Summary

We have calculated the k-fundamental groups of a closed k-curves and
a wedge product of two closed k;- and ks-curves by the use of digital k-
homotopy theory and digital covering theory. To be specific, we have investi-
gated some properties of a digital covering that could be used to calculate the
k-fundamental group of a closed k-curve not k-contractible. It turns out that

a closed k-curve C,’:"‘ is k-homotopically thinned to be a simple closed k-curve

SCy ' in terms of a strong k-deformation retract. Consequently, wk(C:’l’,co)
was proved isomorphic to [Z, which is often used for the study of the discrete
Deck’s transformation group of a space, where | = l;— the number of the
simple k-curve points in C;"ll. Furthermore, an algorithm for calculating the
k-fundamental group of C','C"l1 has written in terms of the deletion of a simple

k-curve point in C;:’ll motivated by Remarks 4.12 and 5.6, and Theorems 4.9
and 7.1. Since digital topology can play an important role in computer science,
the current results could be used to study 2D-, 3D-digital images and further,
hyperspectral images.
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