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Application of the Implicit Restarted Arnoldi Method
to the Small-Signal Stability of Power Systems

Dong-Joon Kim' and Young-Hwan Moon*

Abstract — This paper describes the new eigenvalue algorithm exploiting the Implicit Restarted
Arnoldi Method (IRAM) and its application to power systems. IRAM is a technique for combining the
implicitly shifted mechanism with a & -step Arnoldi factorization to obtain a truncated form of the
implicitly shifted OR iteration. The numerical difficulties and storage problems normally associated

with the Arnoldi process are avoided. Two power systems, one of which has 36 state variables and the
other 150 state variables, have been tested using the ARPACK program, which uses IRAM, and the
eigenvalue results are compared with the results obtained from the conventional QR method.
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1. Introduction

The conventional [1, 2] method for small signal
stability analysis is not applicable to large-scale
power systems because of limitations due to memory
capacity, computing time, and computation accuracy.
To evaluate the small signal stability of power systems,
it is usually required to only calculate a specific set of
eigenvalues related to certain features of interest, for
example, local mechanical modes, interareca modes,
etc. Therefore, significant effort has been expended in
developing new methods with basic properties, such
as sparsity-based techniques, finding a small specific
set of eigenvalues and mathematical robustness with
good convergence characteristics and numerical
stability [3, 4].

Because the eigenanalysis of modern power
systems deals with matrices of very large dimension,
sparsity techniques play a key role in the analysis.
Two of the more popular sparsity-based eigenvalue
techniques for general unsymmetrical matrices are the
S-method [3], which is based on the Lanczos method
with Cayley transformation, and the modified Arnoldi
method [4]. The Lanczos-type method is a very
successful method for the symmetrical eigenvalue
problem, but has serious flaws in the case of
unsymmetrical eigenvalue problems, known as the
phenomenon of ‘breakdown’. The modified Arnoldi
method uses complete reorthogonalization and an
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iterative process with shift-invert transformation {5, 6].
However, reorthogonalization requires considerable
storage and repeatedly finding the eigensystem will
become prohibitive due to the cost of flops. To
overcome such difficulties, an alternative has been
proposed by Saad [8, 9] to restart the iteration with a
vector that has been preconditioned so that it is more
nearly in a dimensional invariant subspace of interest.
This preconditioning takes the form of a polynomial
applied to the starting vector. The polynomial is
constructed to damp unwanted components from the
eigenvector expansion. This technique is referred to as
explicit (polynomial restarting). One of the more
popular methods is the Arnoldi—-Chebyshev method.
This paper describes another restarting approach,
which is applicable to very large power systems. This
approach is called the implicitly restarted Arnoldi
method (IRAM) [5, 6]. IRAM is a technique for
combining the implicitly shifted mechanism with a & -
step Arnoldi factorization to obtain a truncated form of
the implicitly shifted QR iteration. The numerical

difficulties and storage problems normally associated
with the Arnoldi process are avoided. The algorithm is
capable of computing a few (k) eigenvalues with user-
specified features, such as largest real part or largest
magnitude. Implicit restarting provides a means of
extracting interesting information from very large
Krylov subspaces while avoiding the storage and
numerical difficulties associated with the standard
method. It does this by continually compressing the
interesting information into a fixed size-dimensional
subspace. This is accomplished through the implicit-shift
mechanism.
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In this paper, the basic algorithms of IRAM, which are
applicable to large-scale power systems, are described as an
initial research phase for developing a sparsity-based
eigenvalue program and the algorithms using IRAM are
applied to two power systems in order to investigate its
features.

2. IRAM Algorithm

2.1 Implicit Q Theorem

The Hessenberg decomposition is not unique, but it
becomes so if the first column of Q is specified [10].
This is essentially the case provided that H has no zero
subdiagonal entries. Hessenberg matrices with this
property are said to be unreduced. A very important
theorem that clarifies the uniqueness of the Hessenberg
reduction is the implicit @ theorem.

Theorem 1.

0=[4q,,.4,]
matrices with the property that both Q"40=H and

(Implicit @  Theorem) Assume

and V:[Vp“‘avn] are orthogonal

VT4V =G are upper Hessenberg where 4 € R™" . Let k
= 0 )

with the convention that £ =nif H is unreduced. If

denote the smallest positive integer for which h. .
q, =v,, then g ==+v and |h/,H‘ = \gw| for i = 2:k.

Moreover, if k<n,then g, , =0.

2.2 The Double Implicit-shift QR [10,11]

The single-shift QR iteration uses h, as the best

approximate eigenvalue along the diagonal during each
iteration:

fork=1,2,...
u=H(n,n)
H—ul =UR ( OR factorization)
H=RU+ ul

end

However, if the ¢igenvalues a, and a, of:

G_ hmm hmn . 1 (1
= P m=n- )

nny nn

are complex, then 4, would usuvally be a poor

approximate eigenvalue. To avoid this difficulty it is
possible to perform two single-shift QR steps in

succession using a, and a, as shifts:

H-al=UR,

H =RU, +al @)
H -al=U,R,

H,=RU,+a,l. (3)

These equations can be manipulated to show that:
UUXRR) =M “
where M is defined by:
M=(H-al)H-a,l). (5)

Note that M is a real matrix because:

M=H?-sH+tl ©)
where:
s=a +a,=h, +h, =trace(G)e R
and:
t=aa,=h_h_ —h h =det(G)eR

Because this step requires O(n’) flops to compute
H, from H it is not a practical course of action to

compute H,=Z"HZ, where Z is computed from real
QR factorization. However, by applying the implicit Q
theorem, the double-shift step with O(n*) flops can be
implemented. In particular, we can effect the transition
from H to H, in flops if we compute Me,, the first
column of M . The first column of M is
Me, =|x,y,z,0,---,0] where:

X = hl21 +hyhy, —shy +t (7
y=h2](h“+h22—s) (3)
z=hyh,. 9)

Then we can determine a Householder matrix P, such
that P (Me) is a multiple of ¢ , and compute
Householder matrices F,---,P,_, such that if Z is the
product Z =PBPR---P,_, , then Z HZ is upper
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Hessenberg and the first columns of Z and Z are

identical.
2.3 k-step Arnoldi Factorization
If A e C™" then arelation of the form:

AQ, =Qka+rke: (10)

where Q,eC™ has  orthonormal  columns,
Of'r,=0 and H, eC™* is upper Hessenberg with

nonnegative subdiagonal elements and is called a A-step
Amoldi factorization of A. These equations are obtained
from an Amoldi process. In particular, if
0=1Iq,,"-,q,]and we compare columns in 4Q=0H,

then:

k+1

Aq =Y hq,, 1<k<n-1. (11)
i=1
Isolating the last term in the summation gives:
k
B nGin = 4q, —Zhikqi =rn (12)
i=1

where h, =q] Ag, for I = L:k. It follows that if r, #0,
then g¢,,, is specified by:

G =T s (13)

where &, =],
The g, are called the Amoldi vectors, and they define
an orthonormal basis for the Krylov subspace x(4,q,,k):

span{q,, -+,q; } = span{q,, 4q,,"-, Ak_]q] 3.
2.4 Implicit Restarted Arnoldi Method (IRAM)

The IRAM determines the restart vector implicitly
using the QR iteration with shifts. The restart occurs
after every m step and we assume that m > j where j is
the number of sought-after eigenvalues. The choice of the
Amoldi length parameter m depends on the problem
dimension, the effects of orthogonality loss, and system
storage constraints. After m steps we have the Amoldi
factorization:

AQ: =QcH, +r.e, (14

The subscript ¢ represents current. The QR iteration
with shifts is then applied to H.. Here p=m—j, and
we have H, =V'H_.V because V/H"V,=H"" . The
orthogonal matrix V' =V;---V , with V;, the orthogonal
matrix associated with the shift x4 , has two crucial
properties:

(@ [V],for i=1:7-1. This is ‘because each V, is
upper Hessenberg and so V7 e R™" has lower
bandwidth p =m -~ j .

(b) Ve =a(H,—p,INH;—p, D) (H, - wl)e , where

a is a scalar.

We obtain the following transformation:
AQ. =Q.H +reV (15)

where Q, =0V . Given property (a),

e e fa R A o iy (3 ey

‘

Fig. 1. Step 1: Amoldi factorization, Q,, H,,, +7,e,

B L L e s [ sl Sl e o e
Fig. 2. Step 2: Applying the implicitly shifted step, .
Qj+pVVTHj+pV +rev

R e e &

Fig. 3. Step 3: j-step Arnoldi factorization after discarding
the last columns, Q,H, +v,r,e; .

mpom=j
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A0,G1: )= 0,C1: HH. (A j,1: +v,re, is a
length j Arnoldi factorization. Back to the basic Arnold
iteration at step j+/ and performing p steps, we can

have a new length m Arnoldi factorization.
Fig.1~3 illustrate one cycle of the iteration, to clarify
each step of IRAM.

2.5 Shift - Invert Spectral Transformation

The shift-invert spectral transformation with IRAM

enhances convergence to a desired portion of the spectrum.

If A isanecigenpairfor 4 and o # A, then:
(A-o)'x=xv,where v=1/(1-0). (16)

These transformed eigenvalues of largest magnitude are
precisely the eigenvalues that are easily computed by a
Krylov method. Once they are determined, it is simple to
transform back to the original problem.

1
A =o+— (17)

i

In addition, the complex shift-invert method requires
twice the storage requirements of the real shift-invert
method.

3. Small-Signal Stability of Multimachine Systems

3.1 Formulation of the State Equations [12]

The linearized model of all machines and its control
devices can be expressed in the following form:

px, =A4x, +Byv, (18)

iy =C,x, ~D,v, (19)

where:

T T
Xg :[lezl’m’xtgn] > Ve :[vfggl""’végn]

T . - . T
V. :[vip"'svzn] » lgg =[l;gl,“',l;gn] .

A, ~ D, are block diagonal matrices composed of the

corresponding device matrices. The interconnecting
transmission network is represented by the node

equations:
[""g} G {v} (20)
Ly Yo Ylva

by = IV @n

i

where:

J;: nonlinear load bus linearized coefficient

LV, - Vvoltage and current of generator bus,

. . . T ¢ t 17
lng =[l:1g1’”"l:tgn] > vng :[vngl"“’vngn]

Y voltage and current of load bus

nl ?

. ) 4 a7 foqT
by =[] s Ve =V V]

Ygg ~ Y, : admittance matrix of network

Equating Equation (20), associated with the admittances
of the load and generator buses, and Equation (21) we
obtain:

ing = [Ygg - I]gl (Yll - JI )_1 Ylg ]vng (22)

Network equations are written in a synchronously
rotating R-I reference frame. For synchronous machines,
Park’s equations are expressed in local d-q coordinates
fixed on the generator rotor. It is necessary to transform
the network input variables, such as terminal voltages,
into the local d-q coordinate fixed on the generator rotor.
The following transformation matrices are used to change
the reference frame:

iy =iy =Ti +T,5 (23)
Vng = T;vﬁv = 713vdq = 713vgg (24)
3 sind, —cosd, (25)

k |:cosé'0 siné‘o}

T L py €088, +1,,5in (26)
21 0SNG, +1,,cos &,

r =[—V; sing, cos 00] (27)

V,cos6, siné,

6=Tyx,

The elements of 7, which are related to generator
angles, are equal to unity and the others are zero. Using
the transformation matrices above, we obtain the complete
system state matrix [12]:

px, =Ax,, (28)
where:

A=A, +B,(TY,T,+D)'(C,~T,T)  (29)

Y, =Y, - Y, -J) 'L, (30
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3.2 Implementation of IRAM

To apply the shift-invert transformation around a
specified point 4 , the following transformation

A4, =(4-AJ0)" can be used to magnify the eigenvalues of
Acloseto A .

In IRAM, the only operation involving 4, is the matrix-
vector multiplication 4, and the solution of the
equations is:

(A4-A1D)q, =v,. (31)

i

By substituting the expression for the state matrix A of
a power system, given by Equation (29), in Equation (31),
the extended system matrix can be rewritten as:

A, —A 1 B . .
D ] D qx _ vl , (32)
CD _(Y v T Y, De ) U; 0
where 4,, B,, and D, in Equation (31) are replaced by
Ap, Bp, and Dp, respectively. In addition, Cp and Yy are:

C,~TiT,
o =[ . } (33)

N YIg T; YII

The solution of Equation (31), to compute ¢;, involves
three steps: '

1. calculate Y, (1)=D,-C,(AI-4,)"'B,

2.solve for u, : (Y, +Y, (A Du, =—C,(A1—4,)"v,

3. caleulate: g, = (41— A,)" (Byu,—v,).

Because matrix Y, has the sparsity structure of a
nodal admittance matrix, the method can be applied to
very large systems by using sparsity-based techniques for
the solution of algebraic equations. The matrix product
C,(AI~4,)"'B, is block diagonal and each (2 x 2)
diagonal block can be obtained from the product
C,/ (A1 - 4,))"'B,, where C,/,(4,I' - 4,"), and B, are
blocks associated with the i-th system component, such as
a generator.

4. Case Study

This section describes the testing of two systems, an 11-
bus system and a 39-bus system, with the ARPACK
program [6], in which the IRAM algorithm was

implemented with Fortran 77, using BLAS and LAPACK
in part. To apply IRAM with single precision to the power
system for small-signal stability, the PSS tuning program,
PWRSTAB [12], and ARPACK program were integrated
into one program. However, the eigenvalues of IRAM
were calculated using ARPACK and those from the QR
method were calculated by using the PWRSTAB program.
The two results are compared.

4.1 Two-Area System

An 11-bus system, as shown in Fig. 4, which has four
machines equipped with static exciters, is of order 36 with
one unstable mode, which is caused by rapid-response
exciter systems. The eigenvalues were calculated by
ARPACK (slightly modified to handle complex matrices)
with every shift point from (0.0, j15.0) to (0.0, j1.0) with a
decrement of —1.0. Table 1 shows the comparison of the
two results, the QR method, and IRAM. They produced
almost identical results.

400 MW
—

2

2

Area Area
1 2

Fig. 4. Two-area system

Table 1. Comparison of the eigenvalue results from the

QR method and IRAM
No. OR IRAM

Real Imag Real Imag
1 —18.659 +16.458 —18.659 +16.458
2 —-19.171 +10.152 -19.171 +10.152
3 —0.466 +7.332 —0.466 +7.332
4 —0.665 17.162 —0.665 17.162
5 0.049 +3.867 0.049 +3.867

4.2 England 39-bus system

The England 39-bus system has 150 state variables
including 10 machine models, nine exciter models, and
nine governor models. Table 2 presents the identical
eigenvalue results from the two methods. This indicates
that IRAM provides reliable results irrespective of system
size. In this paper, the calculation speed of IRAM for a
large-scale power system could not be investigated
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because we did not use a large-scale eigenvalue program
that exploits sparsity and, therefore, could not study large-
scale power systems; these will be studied in the next
research phase.

Table 2. Comparison of the eigenvalue results of QR
method and IRAM (150 order system)

No. OR IRAM

Real Imag Real Imag
1 —0.283 +7.715 —0.283 +7.715
2 —0.145 +7.612 —0.145 +7.612
3 —0.091 +7.105 —-0.091 +7.105
4 —0.196 16.261 ~0.196 +6.261
5 =0.127 +3.987 -0.127 +3.987
6 —0.069 +1.338 —0.069 +1.338

8. Conclusion

This paper describes the implicit restated Arnoldi
method algorithm, which is applicable to large-scale
power systems, and its application to small-size power
systems to observe the salient features of the IRAM
algorithm. The ARPACK program was used to apply
IRAM with shift and invert spectral transformation to
power systems for small-signal stability. The two area 11-
bus system with 36 state variables and the England 39-bus
system with 150 state variables were tested using IRAM
and the eigenvalue results compared with results obtained
from the QR method. They show identical eigenvalue
outcomes for both systems. Therefore, the research results
of this paper indicate that IRAM provides reliable
calculation results for the eigenvalues of concem,
regardless of system size.

In the ongoing research phase, an efficient sparsity-
based eigenvalue algorithm applicable to very large power
systems will be developed using the IRAM algorithm.
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