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A Study on Machine Fault Diagnosis using Decision Tree

Ngoc-Tu Nguyen*, Jeong-Min Kwon* and Hong-Hee Lee'

Abstract — The paper describes a way to diagnose machine condition based on the expert system. In
this paper, an expert system — decision tree is built and experimented to diagnose and to detect
machine defects. The main objective of this study is to provide a simple way to monitor machine status
by synthesizing the knowledge and experiences on the diagnostic case histories of the rotating
machinery. A traditional decision tree has been constructed using vibration-based inputs. Some case
studies are provided to illustrate the application and advantages of the decision tree system for machine

fault diagnosis.
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1. Introduction

Most machine fault diagnosis systems utilize the expert
system, which is mainly based on vibration symptoms and
stator currents. The principle of this method is the fact that
the fault inside the machine structure can be visible as
distinct frequency components in the spectrum. With
knowledge of machine behavior, it is possible to perform a
diagnostic analysis of the machine, which can be accomplished
by experts or an expert system instead.

Fault detection and diagnosis in rotating machines have
been used widely in commercial systems over the past few
decades. Numerous works on machine conditions have
been implemented with the aid of the MCSA (Motor
Current Signature Analysis) method by W. T. Thomson [1]
and the vibration-based methods surveyed in [2-4], etc. The
purpose of these methods is to detect and diagnose faults in
an early stage and therefore allow contingency plans to be
put into place before the problems worsen. Detection or
diagnosis can be achieved either manually or on the basis
of the rule-based system.

The decision tree, which builds the diagnostic rules
depending on the human experiences, could be used for the
above purpose. As compared to other methods, decision
tree has several advantages such as the simple construction
and clear predictions. All vibration symptoms such as
amplitude, phase, trend, and frequency should be gathered
and analyzed to achieve the most reliable prediction.
Because of the complication of time domain vibration, the
vibration data are analyzed in frequency domain, where the
frequencies describe what is wrong with the machine and
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the amplitudes describe the relative severity of the problem.
With the collected vibration data, the user only has to
answer the attribute tests in decision tree in order to obtain
the problem prediction. However, most tests have only yes-
no type answers and this is the main characteristic that
makes the tree easy to operate.

2. Decision Tree Construction

The decision tree is a diagnostic tool that builds the
knowledge-based system by the inductive inference from
case histories. A decision tree contains:

- Leaf nodes (or answer nodes) that contain class name.

- Decision nodes (or non-leaf nodes) that specify some
test to be carried out on a single attribute value, with
one branch and sub-tree for each possible outcome of
the test.

The structure of the decision tree highly depends on how
a test is selected as the root of the tree. The criterion for
selecting the root of the tree is Quinlan’s information theory
(information gain) [5]. This criterion means the information
that is conveyed by a message depends on its probability.
The construction of the decision tree is based on a training
set T, which is a set of cases. Each case specifies the values
for a collection of attributes and for a class. Let the classes
be denoted {C,, C,, ..., Ci}. Suppose we have a possible
test with n outcomes that partition the training set T into
subsets {Ty, Ty, ..., T,}. Assume that S is any set of cases,
freq (C;, S) is the number of cases in S that belong to class
C,, and |S| is the number of cases in set S. If we select one
case at random from set S and announce that it belongs to
class C;, this message has probability
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When (3) is applied to the set of training cases, info (T)
measures the average amount of information needed to
identify the class of a case in T.
A similar measurement after T has been partitioned in
accordance with n outcomes of a test X

info, (T) = Z% xinfo(T,) bits )
’ i=1
The quantity
Gain(X) = info(T) — infox(T) 5)

measures the information that is gained by partitioning T in
accordance with the test X. The gain criterion selects a test
to maximize this information gain. Detailed descriptions of

decision tree construction are presented by J. R. Quinlan in [5].

Up to now, a lot of algorithms have been developed
based on this criterion such as ID3, C4.5, etc. When a
decision tree is built, it can be used to classify a case by
starting at the root of the tree and tracing out the path until
a leaf is encountered. This paper proposes a decision tree
established upon vibration-based method, where vibration
data are collected from accelerator sensors and processed
to become the input of the decision tree. The tree gives a
final decision for machine condition from these data.

3. Vibration-based Decision Tree

Most common failures for rotating machinery appear in
the vibration spectrum by some unusual frequencies. There
are many types of machine faults and their brief
information about the relationship with the running speed
(1X) of the machine is described in [6].

This paper proposes a decision tree with 12 common
causes of machinery vibration (classes of decision tree) and
its tests [7-9].

Table 1. Source of vibration — common faults of induction

motor
No. Source of vibration
1 Mechanical unbalance
2 Misalignment
3 Partial rub
4 Crack
5 Mechanical looseness
6 Ball bearing damage
7 Foundation distortion
8 Oil whip
9 Static air gap eccentricity or stator damage
10 Critical speed
11 Dynamic eccentricity air gap or rotor damage
12 Gear damage
Table 2. Decision tree test and its value
No. Test (attribute) Value
1X, 2X, 1X and
2X, Harmonics of
1 | Whatis the predominant frequency? | 1X  (mutltiple),
Higher than 1X,
Lower than 1X
2 | Is0.38-0.48X component predominant? | yes, no
3 Is bea.rlng damage frequency yes, no
predominant?
4 | Is there 2f};, frequency? yes, no
5 Is there 2sfy;,. frequency? yes, no
Are there harmonics of 1/2X
6 yes, no
component?
7 | Is there amplitude change? yes, no
8 | Is there phase change? yes, no
9 Is axial amplitude larger than es. 10
radial amplitude? yes,
10 Is O.I‘blt shape tending to banana yes, no
or eight shape?
1 How is amplitude change during | constant,
coast-down (shutdown)? decrease, drop
12 Is gear damage frequency yes, 1o
predominant?

A list of common faults of the induction machine is
given in Table 1.

In order to track to the leaf from the root of the tree,
there are a set of questions or tests that have to be
answered. Table 2 describes the tree’s test and its value.

The decision tree is built using the C4.5 program, which
is based on case history database. C4.5 is developed by J.
R. Quinlan, and its algorithm has already been described in
Section 2. The knowledge-based data are developed over a



Ngoc-Tu Nguyen, Jeong-Min Kwon and Hong-Hee Lee 463

period of time under different conditions of machine
operation. John S. Sohre has collected a useful database on
machine diagnosis which is given in chart forms as shown
in [10]. The proposed decision tree has been built based on
these knowledge data.

When the tree processes, the system will start at the
predominant frequencies and try to reach the final

prediction by collecting some special symptom information.

The construction of decision tree makes the diagnosis
system become simpler with if-then rule sets.

4. Experiments

Some experiments are applied to induction motors (SHP,
4 poles and 1HP, 2 poles), and decision tree is established
using the C4.5 algorithm. In these experiments, vibration
data are collected and analyzed by FFT (Fast Fourier
Transformation), and accelerometer amplitude scale is

101.5mV/g. The decision tree for this experiment is built as
in Fig. 1.

4.1 Case study 1 - Looseness case

The motor is driven at 29.3 Hz (1X) input frequency.
Predominant frequencies are 1X, 2X, 3X and 10X
(multiple harmonic of running frequency) presented in the
vibration spectrums in Fig. 2.

Result is predicted by the decision tree in Fig. 3.

Predomxnant frequency = 1x:
amplltude _change = yes:
i 2s_line frequency = yes: Dynamic air gap ¢5.3
H 25_line fregquency = no: Partial wub (38. B/15 B)
amp11tude _change = no:
bearing frequency = yes: Ball bearing damage ¢15.8>
hearing frequency = no:
2z _line frequency = yes: Dynamiec air gap (9.7)
2s_line frequency = no:
H 8.38-9.48x yes: 0il whip (6.8>

H 1 @.38~8_48x no: Unbalance (34.8>
redoninant frequency = 2x:

Orbit shape = yes: Misalignment (58.8)

Orbit shape = no: Crack (58.0.20.8)>
redominant frequency = same:

fixial direction = yes: Misalignment <70.8)

fixial direction = no: Unbalance (38.08)
redoninant frequency = Multi:

Axial directien = yes:

H Orbit shape = yes: Misalignment <30.8)
i Orhit shape = no: Crack ¢4.5)
ﬂxxal direction no:
amplitude_change = yes: Partial rub <{i4.9-1.9>
amplitude_change = ne:
1/2%x—multi = yes: Looseness (31.6>
1/2x—multi = po:
i 8.38-8.48x = yes: 0il whip <6.8>
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Shutdown = constant: Partial rub <8.8>
Shutdewn = decrease: Foundation distowrtion <25._8)
Shutdown = drop: Partial rub <33.8)
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H H 9.38-8.48x = no: Crack (12.9/6.4>

redominant freguency = Higher:

bearing frequency = yes: Ball bearing damage €(30.8)

bearing frequency = no:

[ ~line frequency = yes: Static air gap (38.8>

i 2_line frequency = no:

i H Gear damage frequency = yes: Gear damage (38.8)

i i Gear damage frequency = no: Partial rab €18.8>
redominant frequency Louwer:

B8.38-8.48x = yes: 0il whip ¢42.8

? -38-8.48x = no:

;

H

Fig. 1. Decision tree for machine fault diagnosis used in
experiments
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Fig. 2. Vibration spectrums (a) in radial direction (b) in
axial direction

Predominant frequency: Multi
Axial direction: no
amplitude _change: 7
1/2xmulti: ne

A.38-8.48x: no

Decision:
Crack CF =08.42 [ .29 - 8.83 1
Looseness CF = 8.38 [ .88 - B8.54 1]
Partial vrub CF = 8.28 [ 8.17 - 8.71 1

Fig. 3. Result of decision tree with looseness case

The decision tree is executed by answering its tests
based on collected information. The question mark (?)
represents an unsure answer. In this case study, the
probability of looseness fault is 38%. Without the
information of how the amplitude changes, the result of
decision tree suggests three possible failures: crack,
looseness, and partial rub. Looseness is confirmed in this
case.

4.2 Case study 2 — Stator winding fault

In this case study, the component 120Hz is predominant
(two times the power line frequency) from the vibration
spectrums in Fig. 4.
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Fig. 4. Vibration spectrums of case study 2

The result of decision tree is

Predoninant frequency: Higher
hearing freguency: no
2_line frequency: yes

Decision:
Static air gap CF =1.80 [ B.95 - 1.06 1

Fig. 5. Result of decision tree for stator winding fault case

The result shows static eccentricity air gap fault, which
means there is a problem with the motor stator or power

supply.
4.3. Case study 3 - Rub fault

In this case, induction motor is running at 53.7 Hz. From
the vibration spectrums at Fig. 7, the predominant frequencies
are multiples of 1/3X harmonic, but no shutdown data is
measured. Therefore, the decision tree’s result has two
possibilities, partial rub (57%) and foundation distortion
(43%). Rub is detected in this motor. The diagnostic
outcome is shown in Fig. 6.

Predoninant frequency: Lower
0.38-8.48x: no
Shutdown: 7

Decision:
Partial »ub CF = B.57 [ 8.55 - B.59 ]
Poundation distortion CF = 8.43 [ B.41 - 8.45 ]

Fig. 6. Result of decision tree with rub case

The result can be more reliable if there is enough
information to answer all the tests of the decision tree.

4.4. Case study 4 - Unbalanced rotor

The vibration spectrum in Fig. 8a shows 1X as the
predominant frequency. If there is no information for
vibration amplitude change, then the probability of
unbalance fault using the decision tree is 65% compared
with 18% of partial rub and 18% of critical speed faults.
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Fig. 7. Vibration spectrums (a) in radial direction (b) in
axial direction
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Predoninant freguency: 1Ix
amplitude_change: ?
2s_line frequency: no
bearing frequency: no
B.38-8.48x%: no

Pecision:
Unbalance CF = @8.65 [ B.62 - @
Partial vrub CF = 6.18 [ 8.15 -
Critical speed CF = 8.18 [ B.0

85
8.3
B —_

5D 60 et

1
.23 1

Fig. 9. Result of unbalance case without amplitude change
information

bearing frequency: no
25_line frequency: no
amplitude_change: no
'9.38-8.48x: ne

Decision:
Unbalance CF =9.83 [ 8.77 -1.988 1
Foundation distertion CF = 8.17 [ B.88 - 8.23 }
Fig. 10. Result of unbalance case with amplitude change
information

In case that amplitude_change attribute is known as in
Fig. 8b, the probability of unbalance is increased to 83% as
indicated in Fig. 10.

4.5. Comments and Suggestion

In many cases, it is usually impossible to gather enough
information to trace a leaf exactly under the given situation.
As a result, the final decision may include several
outcomes that have their own probability. The reliability of
the decision strongly depends on the information related
with the symptom. The experimental results also
demonstrate that the more information is collected, the
more reliable the result becomes. It is clear from these
experiments that the decision tree is a simple application
system once it is built completely.

In Table 2, there are some attributes that could be treated
as continuous attributes such as “Is amplitude changed?”
and “How is amplitude changed during coast-down
(shutdown)?” beside other crisp attributes. If these
attributes are considered as crisp ones, there will be some
problems when they have values near the boundary. Then
at some moments, if there is only a small change of
aftribute value near the boundary, it can cause an erroneous
decision. In order to reduce this weakness, these attributes
can be reconstructed to fuzzy attributes. This establishes a
fuzzy border in the region between two attribute values,
resulting in two values being overlapped in some region.
As aresult, even if some uncertainties exist in the attribute
values, the decision tree will not give a completely wrong
decision except a set of predicted probabilities. Many works
on fuzzy decision tree have been published in [11-13].

The attribute’s membership function can be linear or
nonlinear and strongly depends on practical experiments.
In this paper, a linear membership function is supposed and
defined as Fig. 11.

4 no yes

A

0 a b 1

Fig. 11. Fuzzy membership function with 2 fuzzy sets: yes

and no
0 ifx<a
(yes) = % ifanSb,OSxSl (6)
1 ifx2>b
H(no)=1— p(yes) %)

Thus, decision tree’s branches, which have fuzzy
attributes, can be described as shown in Fig. 12. The fuzzy
tree can be constructed from the original decision tree
without any modification except the continuous attributes
classification. The attributes of the fuzzy tree do not have
any output membership function, and each of them only
has an input membership function, which is used to give
the probability of attribute values. An example of soft foot
(foundation distortion) is considered from the attribute
value where amplitude_change is yes (probability is 0.22)
and no (probability is 0.78).

The example is given to illustrate fuzzy tree advantage.
The soft foot (foundation distortion) fault with “Is
amplitude changed?” attribute value in the fuzzy region is
presented in Fig. 13. The diagnostic result is shown in Fig. 14.

Is Amplitude
changed?

How is the
shutdown?

constant

decrease

Fig. 12. A sample fuzzy decision branch



466 A Study on Machine Fault Diagnosis using Decision Tree

Soft foot, 1X amplitude

— ———
I | I | I ] ‘r
09 — im— - A — e o A
I | I | I | | | |
Y Y B
| | | | | I
07)- — —'— . L. _ i L
I | : I | | | |
o6 — — - - o b Lo i
I | I | | I |
I | I | | | I |
L e i H i e Sty H el il yes
| | | I | I |
04 ——j= v q- - T - oo ST oS o7
nSuiaiel g Sk Rkt el Ble Bl At Rl Sk M3}
mmmef-~--2 a4
no
dl
%00 0
Time ( X0.05 sec) wx)

Fig. 13. Vibration amplitude change with soft foot case
The result of the tree now is

bearing freguency: no

2s_line frequency: no
amplitude_change: ves:8.22,n0:0.78
Shutdown: 7

B.38-0.48x: no

Decisien:
Unbalance CF = 8.65 [ 8.60 - 8.98 ]
Foundation distertion CF = 9.17 [ B.082 - 8.32 1
Partial rub CF = B.B9 [ 0.88 - 8.38 1
Critical speed CF = 0.9 [ 9.60 - 8.30 1

Fig. 14. Result of soft foot case with using fuzzy attribute
amplitude_change

At the region near the boundary, amplitude change
value is only yes or no with the crisp decision tree. But, in
case of the fuzzy decision tree, it gives probability values
for both yes and no. If the above experiment is applied to
the crisp tree, the tree with amplitude_change = yes
predicts partial rub (0.43), critical speed (0.43) and soft
foot (0.15). Meanwhile, the tree with amplitude change =
no predicts unbalance (0.83) and soft foot (0.17). It is clear
that fuzzy decision tree used in this case can improve the
reliability to predict the fault condition. Thus, the fuzzy
decision tree is better in a sense of accuracy and reliability
compared to the crisp tree.

5. Conclusions

Many methods have been developed to monitor machine
condition, and this paper has also tried to suggest a way to
investigate this objective. This work has studied how to use
the expert system, which focuses on decision tree
algorithm as a fault diagnostic technique for induction
motors. This paper demonstrates the accuracy and
simplicity of the decision tree to identify the possible
vibration cause in induction motors. Decision trees have
simple construction that can be easily managed by users,
and they also provide acceptable accuracy even though

information is insufficient to predict the condition of the
motor. The problems with them are that decision trees are
sensitive to noises and the discrete output cannot predict
the severity of a fault. Generally, decision trees have been
proved as an appropriate tool for fault diagnosis, but much
work is still needed to be done. Some future works are to
optimize the fuzzy attributes in both membership function
and its parameters and to develop the experiment database
used to construct the decision tree.
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