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Design of Time-varying Stochastic Process with Dynamic Bayesian Networks

Hyun-Cheol Cho', M. Sami Fadali** and Kwon-Soon Lee *

Abstract — We present a dynamic Bayesian network (DBN) model of a generalized class of
nonstationary birth-death processes. The model includes birth and death rate parameters that are
randomly selected from a known discrete set of values. We present an on-line algorithm to obtain
optimal estimates of the parameters. We provide a simulation of real-time characterization of load

traffic estimation using our DBN approach.

Keywords : Adaptive estimation, Birth-Death process, Convergence property, Dynamic Bayesian

networks

1. Introduction

The birth-death process is a well known Markov
stochastic process. The fundamental characteristic of the
process is that its state is only dependent on neighboring
states. Birth-death processes are still widely applied in
science and engineering. A general birth-death process
was used for modeling of stochastic epidemics in [1].
The author also investigated the behavior of state
probabilities with an almost infinity time interval for the
case of a periodic transition intensity matrix of the
process. In [1], the authors provided a review of
Markov-driven fluid queues with special attention given
to the heterogeneous on/off model. In addition, an
approximation procedure in which the original
heterogeneous arrival process is replaced by a
homogeneous birth-death arrival process was presented.
In [2], the authors studied stochastic modeling of the
powder coating process based on a birth-death
population balance including theoretically-derived one-
step transition probabilities. The population balance
equation was obtained under steady-state conditions and
its dynamics were shown to have a Bernoulli
distribution at equilibrium. In [3], the author used the
high volatility of share prices in stock markets to build a
model that leads to a particular cross-sectional size
distribution. The model focuses on both transient and
steady-state behavior of the market capitalization of the
stock, which in turn is modeled as a birth-death process.
In [4], the authors investigated the fluid queue models
with infinite buffer capacity in which the fluid flow is
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governed by a birth-death process with quadratic arrival
and service rates on a finite state space. Recently, in [5]
the author used generalized birth-death processes to
model the ageing process.

Most applications of birth-death modeling concern
stationary or time-invariant characteristics in dynamic
systems in which the model parameters are assumed
constant. In the design step, the parameters are selected
from observation data to optimally reflect system
dynamics. However, parameter selection becomes
suboptimal in real-time implementation if the statistics of
the system change appreciably. The results of the fixed
model become progressively less accurate unless the
model parameters are wupdated. The additional
computationally task of parameter correction becomes
necessary to maintain model fidelity.

We develop an adaptive estimation for parameters of
the birth-death process using DBN technique. DBN is a
graphical modeling approach for temporal states of
dynamic systems. We refer the reader to [6] for more
information on DBNs. We represent the parameters of the
birth-death process with a DBN and sequentially estimate
their values from given observations. We use the time-
moving average of a Bernoulli random variable as an
update rule for the parameters. The convergence of the
proposed estimation is analytically investigated based on
a stochastic convergence theorem and the stability of its
dynamics is demonstrated. We apply our estimation
algorithm to a time-varying M/M/1 birth-death process
for modeling road traffic.

This paper is organized as follows: Section 2 provides a
brief review of the birth-death process. In Section 3, we
propose an adaptive parameter estimation algorithm for the
birth-death process using a DBN model. In Section 4, the
convergence and stability of the estimation algorithm are
studied. A simulation example and conclusions are
respectively provided in Sections 5 and 6.
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2. Preliminaries

We start with a brief review of a generic continuous
birth-death process. Usually, a birth-death process is a
special modification of a continuous-time Markov chain
(See Definition 1) which is homogeneous, aperiodic, and
irreducible [7].

Definition 1 Given a stochastic process X(t), t = 0 where
X(1) is the state of the dynamic system at time 1, a
continuous-time Markov chain is a continuous time,

discrete-valued random process such that for an
infinitesimal time step 6,

pX(t+6)=jl X()=i)=q;6 1)

PX(t+8)=i| X()=1)=1-) ;5 @)

J#i

The main feature of a birth-death process is that its state
changes are only between adjacent states. This
characteristic leads to the restriction that the state transition
parameter at each step g;; in (1) and (2) satisfies ¢g; = 0 for |/
—jl > 1. We state the motion characteristics of the generic
birth-death process as follows:

1) A birth occurs between time ¢ and 7+ with probability
A0 + o(8) where o(8) represents an infinitesimal
change’ of higher order than &. A birth increases the
system state by one to i+1, where the parameter 4, is
the birth (arrival) rate in state 7.

2) A death occurs between ¢ and #+J with probability ;6 +
0(9), which decreases the system state by one to i—1,
where g; is the death (departure) rate in state i. Note
=0.

3) It is assumed that the birth and the death are
statistically independent of each other.

An illustration of a birth-death model with N+1 states is
shown in Fig. 1. Here, the parameters 4,, i =0, -, N-1 and
M, i=1, -, N are the birth and death rates. Note that birth
never occurs at state N and death never occurs at 0.

Let X(7) be a state representing the number of customers

A 4
“" h N
Hy #

sy
Fig. 1. A finite birth-death process model

in the queuing system at time #, which is simply a
difference between total births and total deaths at the
current time. Moreover, pi(¢) = p(X(#)=i) is the probability
of finding the system in state i at time ¢. The Chapman-
Kolmogorov dynamic equations for an N+1 state generic
birth-death model are given by [7]:

L po)=~Zopo(®)+ 11 ) G
%Pi O =4 +u)p; O+ A0y (O + 1 pia @) (4)

where i=1, -, N, and
N
D pn=1 (5)
i=0
The matrix form of (3) and (4) is given by
d T
EPU):Q P(r) ©

where the state probability vector is

P(t)=[Py(t) PR(1) Py(n]" )

and the infinitesimal generator matrix is

—Jy o 0 -« 0 0 0
w —(Ga+m) A o 0 0 0
o= : . : oL : : :
0 0 ©ouna —(Ana i) Ava
0 0 0 . 0 fy iy
(®)

A general solution of the differential equation of (6) is
easily obtained as

P(t) = exp(Q"1)P(0) ©

where P(0) is an initial stochastic vector. The steady-
state probabilities are obtained by setting the left sides of
(3) and (4) to zero and are given by

* ! /l'— *
p; =lim p;(f) = | I(]—lpo} i=1-,N (10)
o s M
Jj=1 J

where

A

7o =}i;§po(t)=[l+§:]i[[—JJ an

J;
=1 =\ My
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This formula expresses the stationary probabilities in
terms of the birth and death rates in the queuing systems.
Thus, the birth-death process is completely specified by
these rates. For the homogeneous case 4,= A4, i = 0, -,
N-1and y;, i=1, -, N, Equation (10) becomes

pf=(1—£][£J, i=1---,N (12)
YN

The parameters of the general birth-death process are
usually assumed fixed, i.e. the matrix in (8) of the
stationary process does not change with time. However, for
a nonstationary birth-death process, the model parameters
and the rate matrix in (8) are time-varying. By simply
introducing time as an argument of the matrix in (6), we
have the time-varying dynamic equation of the birth-death
process as

d e of
EP(f)—Q (OP(1) (13)

3. Adaptive Estimation Algorithm

In this Section, we propose an adaptive parameter
estimation algorithm of the birth-death process. This
algorithm is based on observation sequence from systems
such that the parameter update is sequentially

accomplished using current and preceding observation data.

The observation is periodically obtained during a given
sampling time. This framework is constructed with a
simple discrete-type DBN model, depicted in Fig. 2.

As indicated in Fig. 2, the current state X(k) is caused by
the preceding state X(k-1) and the state observation is
temporal. According to the characteristic of the birth-death

Fig. 2. A simple DBN for the parameter estimation

Fig. 3. The parameters of the birth-death process

Fig. 4. Observation sequence for the birth-death process

process, a certain state at k—1, x{k-1),i =1, -, N causes
three neighboring states (See Fig. 3).
First, we define update rules for the parameters in Fig. 3 as

/li(k)Z(EJ/l[(k—l)ﬁ-(lj (k) i=0,---,N-1 (14)
k k)7
ui(k)=[$)ﬂ,~(k—l)+&jam(k),i=1,---,N (15)

where a,, a; > 0. These are time-averaging expressions
including the previous average and random variables ¢,
and ¢;. The random variables are equal to 0 or a positive
constant ¢ depending on the observed state transition, i.e.

a, (kKy=c, if X(B)=i+l| X(k-1)=i 6
a, (k)=0, otherwise (16)
a, (k)=c, ifX(k):i—1|..X(k—1):ii an
a, (k)=0, otherwise

Note that random variables in (16) and (17) are both
zero if there is no change in the current state, i.e. o, =a,~0
when X(k)=i given X(k—1)=i.

>

Example: Given an observation sequence, e.g.
X(k=3)=i-1, X(k-2)=i, X(k-1)=it1, and X(k)=i+1,
according to (16) and (17), we have o, (k-2)=c,
a(k—1)=c, a,(k)=a,(k)=0 for the observations shown in
Fig. 4. This changes the parameter values using (14) and
(15) so that A(k-2) is decreased, but g (k-2) is relatively
increased. At k-1, A{k—1) is increased, w(k—1) is
decreased, and both A(k) and (k) at k are decreased such
that —(A{k)+ufk)) is increased. This procedure is
sequentially conducted by comparing two observations at
k and k—1. The example demonstrates that the algorithm
is simple and provides efficient online parameter
estimation for a large sample.
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4. Convergence Analysis of the Estimation

In this Section, we examine the asymptotic behavior of
the parameter estimation algorithm of Section 3. By using
a stochastic convergence theorem, we analytically prove
the convergence and stability of the algorithm for a large
sample, i.e. an infinite number of observations.

4.1 Stochastic Convergence

Since the parameter estimation rules of (14) and (15)
have the exact same structure, we only analyze the stability
of one but the results will apply to both. First, we rewrite
(14) as

A,(k) = a(k)A;(k 1)+ b(k)ex; (k)
k 18
= %;al (m) (18

where a(k)=k"'(k-1) and b(k)=k"". For simplicity, we

let ¢ =1 in (16), thus note a; = 1 or 0 such that this
variable is governed by the Bernoulli distribution

pla=a;)=q¢"*1-q)"*, a,;=0,1 (19)

where g = p(a;= 1) € (0,1). The mean and mean square for
the Bernoulli distribution are given by

E(@)=E(a*)=¢ (20)

Definition 2 [8] For a sequence of random variables X on
some probability space, X(k) converges in probability to X .
if, for £> 0, lim P{| X (k) - X >ey=0.

—0

Definition 3 [8] We say that a sequence of random
variables X(k) converges to X in a mean-squared sense, if

I}im E{(X(k)-Xx )1 =0.

Theorem 1 [8] If a sequence of random variables X(k)
converges to X' in mean square, then it converges fo X' in
probability.

Lemma 1 The sequence of the random variable 4; in (18)
asymptotically converges in mean-square to gq.
Proof We seek to prove that

Jim E{(h()-q)? }=0 @1

where g = E{a}. By substituting the second term of (18) in
(21), we expand the limit as

[ 2 o
lim E{| — E a;(n) __qz ay(n)+q?
k—o0 i2 k
n=1 n=]

k k k k
- lim £ k% > ay0n? +Zzlla1(nm(1) 2N arm+g?

n=1 n=1 [ n=1
I

#n

(22)

For i.i.d. Bernoulli trials, the expression becomes

(g kE=1) 5 o o)
]3}_1)130(7(—2—+7q -2q°+q° |=0 (23)

This result shows that the estimation asymptotically
converges to a constant value. Similarly, the estimation of
(15) has the identical convergence property.

4.2 Stability Analysis

We discuss the stability of the time-varying dynamic
system corresponding to our learning algorithm. The
estimation rule of (14) is rewritten in vector form as

m(k +1) = F(k)ym(k) + GUe)u(k) 4)

where the state vector m(k) = [Ao(k) - An.1(k)]’, the input

vector u(k) = [a; ~ ay, 1, and the corresponding

matrices F(k) = (k—1/k)Iy and G(k) = (1/k)ly.

Theorem 2 [9] Consider an unforced linear discrete time-
varying system as x(k+1) = F(ky(k). lts solution vector is
x(k) = Kk, ko)x(ko), ko< k, where the state-transition matrix
Hk,ko) = FIR)F(k-1)--F(ko). If a norm of the solution ||x(k)||
— 0 as k > o for any initial state x(ko), this system is
asymptotically stable. This is equivalent to the condition
ko)l — 0 as k— oo,

Lemma 2 The dynamic equation (5.13) is asymptotically
stable for any initial state m(k,) at initial time k.

Proof The state-transition matrix from k to & for (24) is

L(i-1 ky—1
Bk, ky) = H(Tj v == ]IN (25)

i=kq

where ky 2 1 and &y << k. Applying a limit to (25), we have

. . (ky—1
klgr;mk,ko){,gggo( v HIN=0 (26)
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From Theorem 5.4, we conclude that the recursion (24)
is asymptotically stable.

5. Simulation Example

We apply the proposed estimation algorithm to road
traffic modeling, which is represented by a general birth-
death process. The traffic data pattern was generated using
MATLAB based on the road traffic observed in a section of
Taiwan freeway No. 1 during the rush hours of. 7:00 to
10:00 am. [10]. The traffic data appears to be Poisson
distributed and can be realized by using the MATLAB©®
command, poissrnd. The mean value of the Poisson traffic
is assumed to be uniformly distributed in the range [8, 12]
and is generated using the command, rand. Using a
sampling period of 0.5 min over a period of 3 hours, the
total number of observations is 360. Fig. 5 shows a plot of
the traffic history used for this simulation. We set up 21
states (i.e. N=20) to construct our birth-death model and,
since the process has M/M/1 structure, the birth and death
rates are identical for each state [7], i.e. 4; = A and g, = u
where i =0, ---, 20.

We estimate the two unknown parameters A and u from
the observations using the algorithm of Section 3. Fig. 6
shows the trajectories of the estimated parameters. The
trajectories indicate that the birth rate exceeds the death
rate until about 9:00 a.m. and then drops below it. We infer

Traffic observation

Parameters

7 7.5 8 85 9 95 10
time

Fig. 6. The estimated parameters of the birth-death process

0.14 P(X=20)
LAV

0.1

0.08H . "\

Probabilities

=4
=)
=)

7.5 8 85 9 95 10

Fig. 7. Trajectory of the state probabilities for the traffic
volumes, X=0, --- ,20

that the traffic first rapidly increases but later decreases.

The two curves appear to be almost symmetric because
the probability that a current state is equal to the preceding
one is low. After 8:00 a.m., the curves stabilize but changes
persist due to the nonstationary statistics of the traffic.

Based on the estimated birth and death rates, we
calculate the 21 state probabilities p(X(£)=i), i = 0, -, 20.
MATLAB numerically solves the dynamic equation (13)
for this process. Its solution trajectory for the probabilities
is illustrated in Fig. 7. Following a short transient phase
from 7:20 to 7:35 a.m., we note that until 9:00 am.
Pp(X=20) is the highest probability. After 9:00 a.m., p(X=20)
becomes the lowest probability. In addition, the changes in
the trajectory of the probability p(X=0) are in the reverse
direction of those in p(X=20). These conductions are
analytically justified by the formula in (12). Specifically, as
state X is increased, the corresponding probability is
decreased if the birth rate is smaller than the death rate and
vice versa.

6. Conclusions

We introduce a new parameter estimation algorithm for a
generalized birth-death process. We prove the asymptotic
stability of the estimation algorithm. We apply the
algorithm to road traffic estimation using data from
computer simulation and illustrate the algorithm’s
applicability. Future work includes more realistic
applications using highway traffic data. A potential
application is to select the arrival (birth) rate based on
traffic flow. This framework involves estimation of
highway conditions by the DBN approach and decision
making to select one of several arrival rates.
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