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UNIQUENESS OF ENTIRE FUNCTIONS
AND DIFFERENTIAL POLYNOMIALS

JUNFENG XU AND HONGXUN YI

ABSTRACT. In this paper, we study the uniqueness of entire functions
and prove the following result: Let f and g be two nonconstant entire
functions, n,m be positive integers. If f*(f™ — 1}f" and g (g™ — 1)¢’
share 1 IM and n > 4m + 11, then f = g. The result improves the result
of Fang-Fang.

1. Introduction

Let f be nonconstant meromorphic in the complex plane, we assumed that
the reader is familiar with the notations of Nevanlinna theory ([3, 7).

Set E(a, f) = {#: f(2) — a = 0}, where a zero point with multiplicity m is
counted m times in the set. If these zero points are only counted once, then we
denote the set by E(a, f). Let f(z) and g(z) be two nonconstant meromorphic
tunctions. If E{a, f) = E(a, g), then we say that f(z) and g(z) share the value
a CM; if E(a, f) = E(a, g), then we say that f(z) and g(2) share the value a
IM. Let k be a positive integer. Set Er(a,f) ={z: f(z) —a=0,3i,1<¢ <
k, st. f@(z) # 0}, where a zero point with multiplicity m(< k) is counted m
times in the set.

In addition, we also use the following notations.

Let k be a positive integer and a € CU{oco}. We denote by Nyy(r,1/(f —a))
the counting function of a-points of f with multiplicity < k, by N (r,1/(f—a))
the counting function of a-points of f with multiplicity > k; and denote the
reduced counting function by Ny (r,1/(f —a)), N (r,1/(f — a)), respectively.
Set N (r,1/(f—a)) = N(r,1/(f—a))+N2(r,1/(f—a))+- -+ Nu(r, 1/(f—a)).

In 1976, Gross [2] proposed the following question.

Question 1. Whether there exists a finite set S such that E(S, f) = E(S,g)
can imply f = g for any pair of nonconstant entire functions f and g ?
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Yi [8] gave a positive answer to Question 1. He proved there exists a poly-
nomial set S with 7 elements such that E(S, f) = E(S, g) can imply f = g for
any pair of nonconstant entire functions f and g.

In 2002, Fang and Fang [1] proved there exists a differential polynomial d
such that for any pair of nonconstant entire functions f and g we can get f = ¢
if d(f) and d(g) share one value CM.

Theorem A ([1]). Let f and g be two nonconstant entire functions, n > 8
be a positive integer. If f™(f — 1)f’ and g"(g — 1)g' share 1 CM, then f = g.

In 2004, Lin-Yi [4] and Qiu-Fang [5] proved that Theorem A remains valid
forn > 7.

Theorem B. Let f and g be two nonconstant entire functions, n > 7 be a
positive integer. If f*(f — 1)f' and g"(g — 1)¢' share 1 CM, then f = g.

Naturally, one can pose the following question: what can be stated if CM
is replaced with IM in Theorem B. In ([1]), Fang-Fang obtained the following
theorem.

Theorem C. Let f and g be two nonconstant entire functions, n be a positive
integer. If f*(f — 1)f' and g™(g — 1)g' share IM and n > 17, then f = g.

In this paper, we improve Theorem C and prove Theorem C holds for n > 16
by the different method. In fact, we get

Theorem 1.1. Let f and g be two nonconstant entire functions, n,m be pos-
itive integers. If f*(f™ — 1)f' and g"(¢™ — 1)g' share the value 1 IM and
n>4m + 11, then f = g.

Remark 1.2. Let m = 1 in theorem 1.1, then n > 16. Obviously, Theorem 1.1
improved Theorem C.

In fact, for transcendental entire functions, we also can extend Theorem 1.1
in view of the fixed-point.

Theorem 1.3. Let f and g be two transcendental entire functions, n,m be
positive integers. If f*(f™—1)f" and g"(g™—1)g’ share z IM and n > 4m+11,
then f=g.

2. Lemmas

Lemma 2.1 ([6]). Let f be a nonconstant meromorphic function, n be a pos-
itive integer. P(f) = anf™ + an_1f"" 1 +--- +ay f where a; is a meromorphic
function satisfying T'(r,a;) = S(r, f){(1 =1,2,...,n). Then

T(r,P(f)) =nT(r,f) + S(r, f).

Lemma 2.2 ([6]). Let f and g be two meromorphic functions, and let k be a
positive integer. Then
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Using the method of [10], we get the following.

Lemma 2.3. Let F' and G be two nonconstant meromorphic functions sharing
the value 1 IM. Let
FII Fl GII Gl
H=lm 250~ @ 2a-7
If H #£0, then

Tr,F)+T(r,G)

S 2<N2(T, F) + NQ(T‘, G) + NQ(T‘, %) + N2(T7 é))

+3 (N(T, F) + N(r.G) + N(r, %) + N, é))
+5(r, F) + S(r, G).

Lemma 2.4. Let f and g be two nonconstant entire functions. Let F' =
P =1f and G = ¢g"(g™ — 1)g', where m,n are two positive integers. If
F and G share the value I IM and n > m + 2, then S(r, f) = S(r,9).

Proof. By Lemma 2.1, we get

(n+m)T(r, f) = T, "™ -1))+5(f)
T(r,F)+T(r,f)+S(r f).

AN

Hence )
T(r,F) > (n+m - DT(r, f) + S(r, ).

By the second fundamental theorem and Lemma 2, then

T(r,F) = N, F) + N(r, 2) + N(r, 5) + S(r, )
— —, 1 — 1 -, 1
—N(r,f)+N(r,?)+N(r,m)+N(r,F)

— 1
+N(Tam) +S(7‘,f)
=QC+m)T(r, f)+T(r,G)+ 5, f).
Noticing that
T(T, G) S T(T, gn(gm - 1)) + T(Tv gl) S (n +m+ I)T(T7 g) + 5(7’, g)

Hence

(n=3)T(r.f) < (n+m+1)T(r,g) +S(r,g) + S(r, f).
Similarly, we have

(n=3)T(r,g) < (n+m+1T(r, )+ S(r,g) + 5(r, f).

This proves the lemma. O
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3. Proofs of the theorems
In this section we present the proofs of the main results.

Proof of Theorem 1.1. Let

ey F=fm=-1f, G=4"g" -1,
1 1

F = n+m+1 _ n+1,
2) ! n+m+1f n+1f

Gl — 1 n+m+1 _ 1 gn+1

n+m+1 n+1 ’

where F and G share the value 1 IM. Then by Lemma 2.1, we have
(3) T(r,Fl):(n+m+1)T(r,f)+S(r,f)
(4) T(TﬂGl) = (n+m+1)T(r,g)+S(r,f)

Noting that F{ = F, we have

m(r, 5) < mir, ) + S(r.1).

Then by the first fundamental theorem, we have

T(r,Fy) =T, F) + Nir, 1) = N(r, 1) + S(r, ).

Obviously, we have
1 1 1
(5) N(T’E) =(n+ 1)N(r, ?)JFN(va)y
(6) N(r, ) = nN(r %) +N(r,ﬁ) + N, %).
By (4), (5) and (6), we have
1 1

7) T(r,F1) < T(r,F)+N(r,?)+N(r,fmT FEme )

_N(Taﬁ) —N(’I‘, %) +S(T7f)
Likewise, we have
1 1
T(r,Gi)< T(r,G)+N(r,=) + N(r, ——miy)
(8) 1 g 1 g - n+1
—N(T, g’“_—l) - N(Ta 'g_f—) + S('I", g)
Let H be the same as Lemma 2.3, and H # 0, then by (1), we have

©)  Nao(r,F)+ Ny(r, %) < 2N(r, %) + N, le__l) LN %),

(10)  No(r,G) + Nalr, —) < 2N(r, i) + N gml

1
1) +N(r,?).
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Utilizing Lemma 2.3 and (7)-(10), we have
T(r,F1) +T(r,G1)

1 1
<5N(r,=)+ N(r,
1 1
+ N(r, Fm __1) + N(T,F) +S(r, f)
11 1 1
( ) + 5N(T7 ") + N(T’, n+m+1 )
9 gm n+1
+ Ny =) + N(r, ) +S(r,9)
T, gm — 1 T, g, g
—, 1 =, 1
+3(N(r, f) + N(r, a)) +S(r,F)+S(r,G).
Noting that
(12) N(r,#) =N(r, §) + N(r, 72=3) + N(r, ).
Similarly,
— 1 — 1 —
(13) N(T)E)SN(ra_)_FN(Ta 1)+N(r7 ,)
Combining the equation (11),(12) and (13), we have
1 1
T(r, 1) +T(r,G1) < 8N(r, ?) + N(r, m)
n+1
1
+AN(r, ) + AN(r, =) + S(r, f)
fm -1 fl
(14) 1 1
+8N(7", 5) +N(’I’, W)
n+1

1
+4N(r, —
g

— 1) +4N(r,;) + S(r,g).

By Lemma 2.4, we get

N(r =) <N 2y + 50 ), N, ;},) < N(r, §> +5(rg).

- f
From this and with (3), (4), (14), we have
(15) (n—4m — 1{T(r, f) + T(r,9)} < S(r, f) + S(r,9).

By Lemma 2.4, S(r,f) = S(r,g). Hence we can get a contradiction from
n > 4m + 11. Therefore, H = 0.
This is,
FII FI G/l Gl
F 2F—1 el 2G—1'
By integration, we have

F=((b+1)G+(a—b-1)/(bG+ (a—b)),
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where a(# 0), b are two constants. Then by the same argument of Lemma 6 in

[1], we have f = g. We complete the proof of Theorem 1.1. O
Proof of Theorem 1.8. We just need to replace F and G in (1) by
(16) p= U ZDS g = DY

z ’ z ’

and thus F; = Fz. Since the term of m(r, 1) = O(logr), it will be occurred
during the proof of Theorem 1.1, especially occurred in the right of (15), but
we still can get a contradiction for f and g are transcendental. This proves
Theorem 1.3. O

4. Final remarks

Remark 4.1. 1t follows from the proof of Theorem 1.3 that if the condition
“fM(f™—a)f and ¢g"(9g™ —a)g’ share z IM” is replaced by condition “f™(f™ —
a)f' and g"(¢g™ — a)g' share a(z) IM”, where a(z) is a meromorphic function
such that a #Z 0,00 and T'(r,a) = o{T(r, f),T(r,g)}, the conclusion of Theo-
rem 1.3 still holds.

Theorem 4.2. Let f and g be two transcendental entire functions, n,m be
positive integers. If f*(f™—a)f' and g"(g™—a)g' share & IM andn > 4m+11,
then f = g.

Similarly, we can get the following theorem by applying the method of The-
orem 1.1.

Theorem 4.3. Let f and g be two nonconstant entire functions, n be a positive
integer. If f*(f —1)f' and g"(g — 1)g' share the value 1 IM and satisfy one of
the following condition,

(i) if Ez(l - 1)f') = E5(1,9™(g - 1) . n(> 8);
(iii) if Ex(L, f*(f = 1)f') = Ea(1,9"(g — 1g'), n(> 12);

then f = g.

As we all known, the condition of n in Theorem 2', Theorem 3’, Theorem 4'
(see [1]) are n(> 8), n(> 9) and n(> 14) , respectively. Obviously, the condition
of (i), (ii), (iii) of Theorem 4.2 improved these theorems, respectively.
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