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BOUNDEDNESS OF DISCRETE VOLTERRA SYSTEMS

Sune Kyu CHol, YooN Hor Goo, aND Namirp Koo

ABSTRACT. We investigate the representation of the solution of discrete
linear Volterra difference systems by means of the resolvent matrix and
fundamental matrix, respectively, and then study the boundedness of the
solutions of discrete Volterra systems by improving the assumptions and
the proofs of Medina’s results in [6].

1. Introduction

Volterra difference system
z(n) = B(n,r)a(r) + f(n), n >0,
r=0

where B : Z, x Zy — R¥** and f : Z, — R¥, can be regarded as a discrete
analogue of classical Volterra integral equation

#(t) = /OtK(t,s)m(s)ds +F(), t>0.

Similarly, linear Volterra difference system

z(n +1) = A(n)z(n) + Y _ B(n,r)a(r), n >0
r=0
can be regarded as a discrete analogue of classical Volterra integro-differential
equation

z'(t) = A)z(t) + /Ot K(t,s)x(s)ds, t > 0.

Discrete Volterra systems arise mainly in the process of modeling of some
real phenomena or by applying a numerical method to a Volterra integral equa-
tion. A property of crucial importance is the boundedness of the solution of
a discrete Volterra system. In fact, error between the true and the numerical
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solutions of a Volterra integral equation satisfies a discrete Volterra system and
thus the boundedness of the solution of this discrete Volterra system assures
the boundedness of the global error, that is, the stability of the considered
numerical method [3].

In this paper, we investigate the representations of the solution of linear
Volterra system by means of the resolvent matrix and fundamental matrix,
respectively, and then study the boundedness of the solution of discrete Volterra
system by improving the assumptions and the proofs of Medina’s results in [6].

2. Resolvent and fundamental matrices

Let R* denote the real k-dimensional Euclidean space with norm

k
o = 3 foul, 7 € B,
i=1

and Z_ denotes the set of all nonnegative integers. Let S = S(Z, R*) be the
space of all functions from Z, into R* and S; = S1(Z4, R*) be the Banach
space in S of all bounded functions from Z, to R¥ with norm
s, = sup | (n)|.
neEZy

Also, S = S5(Z,,RF) denotes the space of all functions in S; having a limit
at infinity ; S3 = S3(Z, R*) space of all functions in S, that have limit zero.
S, and Ss; are Banach spaces with the supremum norm. For 1 < p < o0, [, is
the space of sequences y = (y;)2°, such that Y .o, |ys|? < oo with norm

oo

lyly = (O yil?)# < oo

=1

We consider a linear Volterra difference system
(1) z(n+1) = A(n)z(n +ZBnr + f(n), z(0) = o,

where z(n) € R¥; A(n), B(n,r) are k x k real matrices on Zy and Zy X Z,
respectively, and f : Z, — R¥. Note that the matrix norm is given by

k
Al = max 3 lay| for A= (aij).
iy ]:1

We define the resolvent matriz R(n,m) = R; of system (1) as the unique
solution of the matrix equation

(2) Rin+1,m) = AMm)R(n,m)+ i B(n,r)R(r,m), n > m,

R(m,m) = I (identity matrix).
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We assume that R(n, m) is nonsingular and note that
R™'(n,m) = R(m,n),
and
R(n,r)R(r,m) = R(n,m), n,m,r € Z.

Elaydi [4] proved that system (1) has a unique solution z(n) which can be
expressed as

n—1

(3) (n) = 2(n,0,20) = R(n,0)z0 + Y _ R(n,r + 1) f(r).

r=0
For the completeness we prove in detail:
Proposition 2.1 (Variation of Constants Formula). The unique solution

$(n,0,$0)
of system (1) satisfying z(0) = z¢ is given by (3).
Proof. 1t is enough to show that z(n) given by (3) is a solution of (1).
z(n+1)=R(n+1,0)z + ZR(n + 1,7+ 1)f(r)
r=0
= [A()R(n,0) + Y _ B(n,r)R(r,0)]zo

r=0

n

n—1
+ Y [AMR(n,r+1)+ > B(n,7)R(r,r + DIf(r) + f(n)
=0

T=r+1
n—1
= A()[R(n,0)xo + > R(n,r + 1)f(r)]
r=0
+ Y B(n,m)R(r,0)zo + z_: >~ B(n,7)R(r,r + 1)f(r) + f(n)
=0 r=0 r=r+1

= A(n)z(n) + f(n) + i B(n,n)R(n,r + 1) f(r)

n n—1 n—-1

+3 B, R0+ Y. S Bn,r)R(r,r + ().

r=0 r=0 7=r41
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Then, in view of Fubini’s theorem [1, 2], we obtain

z(n + 1) = A(n)z(n) + f(n) + B(n,n) i R(n,7+1)f(r)
7=0
n n—1r-—1
+ B(n,r)R(r,0)z0+ Y. Y B(n,r)R(r,7 +1)f(r)
r=0 r=0 7=0

= A(n)z(n) + ) _ B(n,r) (z_: R(r,7 + 1)f(7) + R(r, O)xo) + f(n)

= A(n)xz(n) + ZB(n,r)x(r) + f(n).
=0
This completes the proof. d

Remark 2.2. There is another type for R(n,m):
R(n,m) = R(n,m + 1)A(m)

(29) + ”z—: R(n,r + 1)B(r,m), n > m.

r=m

From (2’) we can derive the formula, (3).

Proof. Let p(l) = R(n,1)z(l),n > 1 for the solution z(l) of (1). Then

n—1
Y Ap(l) = p(n)-p(0)
=0

1l
h
+

=

3
+

=

=

If L =0, then we have

p(n)

I
=
£
+
=2
S
+
=
=

z(n) = R(n,0)ao+ > R(n,l+1)f(l).
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Thus we show that L = 0. By the Fubini’s theorem we obtain

n—1 1 n—1n—1
Y>> R(n,1+1)B( =>"Y " R(n,r +1)B(r,)z(1),
=0 r=0 1=0 r=i
and from the equality
n—1 n—1
Y [R(n, I+ DAQD) - R(n, 1) + 3 R(n,r + 1)B(r,)}z(l) = 0
1=0 r=l
we have L = 0. O

In the case A(n) = A, a nonsingular constant matrix and B(n,r) = B(n—r),
we obtain ’

R(n,m) = R(n —m),

and thus, equation (2) reduces to
(4) R(n+1) )+ Z B(n—r1)R

and R(n,m) is denoted by Rs.
We consider the linear homogeneous Volterra system of convolution type

(5) z(n+1) = +2Bn—r z(0) = 2.

r=0
There are k vector solutions z1(n),...,zx(n) of system (5) with z;(0) = ¢; =
(0,...,1,...,0)T, the standard ith unit vector in R*. The k x k matrix X (n),

whose ith column is z;(n), is called a fundamental matriz of system (5). Note
that X(0) = I and

X(n+1)=AX(n)+ Y Bn—r)X(r)
=0
holds. Furthermore
m(na 07 .’EO) = X(”)xo
is the unique solution of (5) with %(0,0,z¢) = z¢. Moreover, by the result [6,
Theorem 6], the unique solution of

(6) z(n+1) = +ZBn—r ) + f(n), z(0) =z
r=0

is given by

™) 2(n,0,0) = X(m)zo + 3" X(n - = 1) (1)

Now, every solution of system (1) can be represented in terms of fundamental
matrix:



668 SUNG KYU CHOI, YOON HOE GOO, AND NAMJIP KOO

Proposition 2.3. The unique solution of system (1) is given by

n—1

®) 2(n,0,20) = X (n,0)z0 + »_ X(n,r + 1) f(r),

r=0

where X (n,0,z0) is a fundamental matriz of unperturbed linear system
(9) z(n+1) = An)z(n) + ZB(n,r)x(r), z(0) = =zo.
r=0

Proof. Tt is clear that z(n,0,zg) satisfies (8) by the Fubini’s theorem. Con-
versely (8) satisfies (1) by the following calculation :

n—1
X(n+1,0)z + ZX(n+ Lr+1)f(r)+ f(n)

r=0

z(n+1)

n—1
= AM)[X(n,00z0+ Y X(n,r +1)f(r)] + f(n)
r=0
n n—1 n
+Z B(n,r) X (r,0)zo + Z Z B(n,s)X(s,r +1)f(r)
=0 r=0 s=r+1

= A(m)z(n) + f(n) + Y _ B(n,r)X(r,0)zo
n—11-1 = n—1
+ Z ZB(n,r)X(r,s +1)f(s) + Z B(n,n)X(n,r +1)f(r)
r=0 s=0 r=0

r=—1

= AMm)z(n) + f(n) + ZB(n, r)[X (r,0)z0 + ZX(’I‘, s+ 1)f(s)]

r=0 s=0
= Alm)z(n) + ) B(n,r)a(r) + f(n).
r=0

This completes the proof. d

Example 2.4 ([1]). For the linear Volterra difference equation

n

z(n+1) = 2z(n) + Z 2" %x(s), x(ng) = xo, n > np > 0.

s=ng
We see that R(n,ng) = X (n,ng) = 3[1+2-4"7"] since
n—1
R(n,m)=R(n,m+1)2+ Z R(n,r+1)2""™,n—1>m > ny,

and
0x(n,ng, xo)

axo = X(Tl,.'l,‘o).
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Note that the solution of the above equation is given by

z(n,ng, xo) = %9[1 +2-4"7"] n > ng.

3. Main results

Firstly, we examine the boundedness of Volterra system

(1) z(n+1) = A(n)z(n) + Z B(n,r)z(r) + f(n), z(0) = zo.
=0
System (1) is a perturbation
(9) z(n +1) = A(n)z(n) + ZB(n,r):c(r), z(0) = zo.
r=0
Theorem 3.1. If we assume that
(i) every solution of (9) is bounded,
(i) Yozolf(n)] < oo,
then the solution x(n) of system (1) is bounded.

Proof. In view of Proposition 2.3, the solution z(n) of (1) is given by
n—1
z(n) = X(n,0)xg + Z X(n,r+1)f(r).
r=0
Note that there exists M > 0 such that |X(n,0)] < M from the condition (i).
Thus we have

n—1

lz(n) < 1X (0, 0)llo] + D [X (n,r + DI F(r)]
r=0
n—1
< M [|330| +y If(r)l} :
r=0
This implies that 2(n) is bounded by the condition (ii). O

Next, we can obtain the following result for the boundedness of Volterra
system

(10)  z(n+1)=AMn)z(n) + Z[B(n,r) + D(n,r)|z(r), z(0) = xo,

r=0
where B and D are k x k matrix functions defined on Z, x Z. System (10)
is a perturbation of system (9).
Theorem 3.2. Assume that in system (10)
(i) every solution of (9) is bounded,
(i) 32720 252, 1D, )] < oo,
then the solution x(n) of system (10) is bounded.
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Proof. The solution z(n) of system (10) can be represented by

n—1 r
z(n) = X(n,0)zo + Y_ X(n,r +1)Y_ D(r,j)z(j)
r=0 j=0

in view of Proposition 2.3. From (i) we have | X (n,0)| < M for some M > 0.
Then we have

() < M |$0|+iZ|D(T,j)I|$(j)|}

r=0 5=0

= M|$0|+2 ID(T;T)IQU(TH+z_:|D(T,j)||$(j)|

r=0 3=0

By the discrete Gronwall inequality [1] and Fubini’s theorem, we obtain

n—1 i r—1
le(m)] < Mol [[ 1+M|D(r,r)|+MZ|D<r,j)|]
r=0

J=0

r=0 j=0

< M|zo|exp ME_:Z|D(7"J)|)
= M|xo|exp MZ_:X_]D(J}TN)

r=0 j=r

r=0 j=r

< M|$0|6XP MZZlD(Jﬂ'”)

It follows from this inequality that z(n) is bounded. O

Now, we investigate the boundedness of solutions of the Volterra system

(11) =z(n+1) = Az(n) + Z[B(n —7)+ D(n —r)]z(r) + f(n), £(0) = zo,
r=0

where z(n) and f(n) are column vectors ; A, B and D are square matrices, by
improving Medina’s results [6].

Medina obtained the following result [6, Theorem 1] by imposing the condi-
tion

(iv) C(n) =% "_,D(n—r) € Ss.
However, we consider the condition

|C|51|R2|1 <1

instead of (iv).

Theorem 3.3. Assume that in system (11)
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(1) f€esy,

(i) B,D €, for some 1 < p < oo,
(i) Ry €1y,
(iv) [Cls,|Re1 < 1.

Then the solution x(n) of system (11) is in S;.

Proof. The solution z(n) of (11) can be represented by

z(n) = x0+ZR2n—r——1 ZDT‘—] +ZR2 —r=1)f(r)

r=0
by the variation of constants formula (3).
Let (0,N) ={0,1,...,N}, N € Z, be a discrete interval. Then we have

lzlony = sup |z(n)| = |z|s,
ne(0,N)

< |Rezol(o,ny + 1 fl0,ny | R2

+  sup (Z|R2n—r—1||ZDr—] )
n€(0,N) —0

< |Rexol(o,ny + I flo,n) | R2l1 + |R2|1|Cls, ] 0,3

< |Rawols, +|R2l1|fls, + |Cls, | Ral1|x](0,n)-

From the condition (iv), we obtain

|Raols, + |Ral1lfls,
1—|Cls,|R2|1

and we conclude that = € S; by (i), (ii), and (iii).

Now, we consider the case C' € Ss, i.e., lim, ,o. C(n) = 0, where C(n) =
Yor—o D(n—7). Then there exists N > 0 such that C(n) is small for all n > N.
If we denote z(n + N) = zn(n), then we have

|z] 0,5y <

n+N
Nin+1) = Azn(n)+ Z [B(n+ N —r)+D(n+ N —r)]z(r) + fn(n),
r=0
zn(0) = z(N).
By performing the change of variable r — N = u, we obtain

n+N
en(n+1) = Azy(n)+ Y [B(n—u)+ D(n —uw)lan(u) + F(n),

r=0

where
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Note that F(n) € S; since
sup [F(n)| < |fnls: + |2l0,m)[1Bls, + |Dls,]-
nel4

Hence
2l (41,00 < |Raols, + |Ral1|Fls,
’ 1—[Cls,| B2y
Therefore |z|s, = max{|z|(,n),|Z|(n+1,00)} is bounded. This completes the
proof. O

The proof of the following theorem [6, Theorem 2] depends on the discrete
Gronwall inequality [5] : |z(n)| < M + 3020 g(r)|z(r)], g(r) > 0 implies

[e(m)] < M exp (i g(r)> .

r=0
But Medina’s proof has a defect that it can not apply to the above discrete
Gronwall inequality directly. So we give a proof that depends on the another
type of the discrete inequality.

Lemma 3.4. Let for all n € Z, the following inequality be satisfied

n—1 s—1
(M) <a+ Y {b@u(s) + 3 c<s,j>u(j>} .

s=ng j=ngp

Then, for alln € Z,

n—1 I
u(n) aH 1+ b(s ZC’syil

§=mno J1=no

IA

IA
e
=5

exp(b ZCS_]

< aexp (i (OFSY c<s,m) .
Proof. Let y(n) =a+> — no[ (8)+>25= 71100 s, §)u(f)]. Then u(n) < y(n)

and u(ng) < y(no) = a. We have

Ay(n) = y(n+1)—y(n)=bn)u(n ZCnJ

j=no

IA

[b(n) £y C(n,j)} y(n)

Jj=no
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Thus we get

j=no

y(n+1) < [1 +b(n) + 2 C(w’)} y(n),

so we obtain

n—1 s—1
ym) < a [ [1+b(s)+ > C(s,j)} ‘

s=ng j=no
O
Theorem 3.5. For system (11), assume that
(1) f € Sl}
(ll) Ry €1y,
(i) Cn)=>"_,Dn—r) €l;.
Then the solution x(n) of system (11) is in S;.
Proof. We write the solution z(n) as
n—1 n—1 T
z(n) = Ra(n)zo + Z Ry(n—r=1)f(r) + Z Ry(n—r—1)» D(r—j)z(j).
r=0 r=0 j=0
Then we obtain
u(n) = |z(n)|
n—-1 r
= |Razols, + |flsi|Reli + [Rals, Y > |D(r = |z ()
r=0 j=0

Putting a = |Raxols, + |f|s,|Rz|1, we have, by Lemma 3.4,

n—1 r-—1

u(n) < a+|Rsls, Y {lD(ONU(T) +3 |ID(r- j)lu(j)]
r=0 7=0

IN

r=0 =0

aexp (|Rg|51 E_:HD(O)I + z_: |D(r ‘J)H)

aexp (|Rg|51 iZ|D(T—j)|> 5

r=0 j=0

where b(r) = |D(0)|. Consequently, we have

lz(n)] < [[Ramols, + | fls,|Ral1] exp (IRzlsliZW(r—j)l)

r=0 j=0
< M
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for some M by the assumptions. This completes the proof. O

Furthermore, Medina in Theorem 4 [6] proved the boundedness of solutions
of system

{10)  z(n+1)= AMn)z(n) + i[B(n, r) + D(n,r))z(r), z(0) = o,

r=0

under the assumptions

(12) Z |D(r,j)y™" < 0o and lim |D(r,j)]y"# =0, 0< vy < 1.
7-:0 ]—)OO

But we impose the condition

iiﬂj(r,j)vj_’“_l <00, 0<y<1

r=0 j=0

instead of (12). Also, the discrete Gronwall-type inequality (Lemma 3.4) is
needed to get the result. Let R; denote the resolvent matrix associated with
system (10).
Theorem 3.6. For system (10), assume that

(i) |Ra(n,m)| <y ™ fpr alln > m and some A > 0 and v € (0,1),

(i) oo 2jm0 1D DY~ < oo
Then the solution xz(n) of system (10) is bounded.

Proof. The solution z(n) of (10) is given by

n—1 14
(n) = Ry(n,0)z0 + »_ Rs(n,7 + 1)y _ D(r,j)z(j)-
r=0 =0
Then, from (i), we have
n—1 L
lz(m)] < Xylwol +AD_ AT D ID(r )llz()]-
r=0 7==0
Thus
n-1 r
u(n) =y "[z(n)] < Aol + XY Y 1D, )y 7 u(i).
r=0 j=0
In view of Lemma 3.4, we obtain
n~1 »
u(n) < Nzolexp(A 3 3 ID(r, )7/~
r=0 j=0

It follows that z(n) is bounded. This completes the proof. O
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