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REPRESENTATION OF SOME BINOMIAL COEFFICIENTS
BY POLYNOMIALS

SeoN-HonGg KM

ABSTRACT. The unique positive zero of Fi,(z) = 22™ — zm+l — pm—1 _
1 leads to analogues of 2(2,:I ) (k even) by using hypergeometric func-
tions. The minimal polynomials of these analogues are related to Cheby-
shev polynomials, and the minimal polynomial of an analogue of 2(2: )
(k even > 2) can be computed by using an analogue of 2(22"). In this pa-

per we show that the analogue of 2(22" ) is the only real zero of its minimal
polynomial, and has a different representation, by using a polynomial of
smaller degree than F,(z).

1. Introduction

To what extent can a sum and its factorization both be known? More
precisely, if A and B belong to a ring, to what extent can we simultaneously
know the factorizations of A, B and C where A + B = C'? There is an inverse
problem: Given C, find A and B with factorizations of a specific type such
that A+ B = C. Cases in which the complete factorizations of each of 4, B
and C are known we refer to as cases of “complete” information. For various
results and examples in case of polynomials about this, see [1].

An example of complete information is that

11 4 g2kl 2
o0 = 11 (2 5)

k=1
satisfies
(0(c)” = 3 (60 + 5=
2 o(q)
A simpler result of this nature is
(1.1) e* + e = 2cosz.
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Here each summand on the left has no zeros, while the right is

2ﬁ (1_%(%11)2)’

n=0

which has infinitely many zeros. The sum in (1.1) and its companion for the
sine function leads us to consider sums such as

n n
(1+3) =(-3)
n n
since €* = limpoo (1 + %)n Upon rescaling z this suggests the study of

determining the factorization of polynomials of the form f(z + 1) & f(z — 1).
The simplest form of this seems to be

(1.2) (z+ 1"+ (z—1)".

It is natural to ask a question how well the coefficients of (1.2) can be repre-
sented by some polynomials? As an answer of this, Author [2] introduced a new
analogue (not a g—analogue) of the doubled binomial coefficient 2(2,9") (k even)
by using a unique positive zero r,, of F,(z) = 2?™ — 2™+ — zm~1 — 1. Here
the modulus of r,, is the biggest among all zeros of F,,(z), and, as m — o,

Tm =+ 1,
-1+ 4/2.
For a positive even integer £ (< n), author [2] defined the (m, k)-analogue of

2(%) by

2
= 2(;) + f(m, k), say
by using hypergeometric functions. Here, as m — oo, we have f(m,k) — 0.
Author [2] defined P, , x(z) to be the minimal polynomial of a(m, k) that is
related to Chebyshev polynomials. In fact, author [2] first studied the case

k = 2 and showed how to compute the minimal polynomial of an analogue of
2(*") (k > 2) by using this. For the case k = 2, author [2] proved

Theorem 1.1. Let u be an integer > 1. Define
Wan(z) : = 4(n(n — 1)) (=1 + 2*)Uy-1(2)Uu(),
Yun(z) : = 2(n(n — 1)) (=1 +2)U;_; (2),

where Uy (z) is the Chebyshev polynomial of the second kind of degree u. Then
the polynomials Pay i1 n2(x) and Pay n2(z) divide the integral polynomials

(].4) A2u+1,n(-77) = Wu,n (2n(nx_ 1) . nT_l 1) _ 4(n(n _ 1))2u+1,
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and

x n
1.5 Boun(z) :=Yyun - - — 1))t
(5)  Baun(®) = Yeu (g ~ g ) ~ (oa = 1)
respectively.

The main purpose of this paper is to show that a(m,2), the analogue of
2(%"), is the only real zero of its minimal polynomial, and has a different
representation, by using a polynomial of smaller degree than F,,(z). While
showing this, we will see zero distributions of some interesting polynomials. In
addition, many related applications about the topics in this paper can be seen

in [3].
2. Results and proofs
In this section we show that
a(m,2) = 2n® +n(n — D2 +r2)

in (1.3) is the only real zero of P, n2 and obtain another representation of
a(m, 2).

Theorem 2.1. Let m be an integer > 2. Then a(m,?2) is the only real zero of
Ppn2. Moreover, for any positive integer u,

a2u+1,2) =2n* + n(n — 1)(gu + g3%),
a(2u,2) = 2n* + n(n — 1)(hy + b 1Y),
where g, is the (positive) real zero of 22¥+! — putl _u = 0, and h,, is the

du_ _2udl_, 2u_ _2u—1
real zero > 1 of 2——= (Zizl)Q 27 4l =,

To prove this, we will investigate zero distributions of some polynomials.
We first consider the case m = 2u + 1.

For the proof of following Lemma, we will need the theorem of Cauchy (for
the proof of this, see p. 122 of [4]).

Theorem 2.2 (Cauchy). All the zeros of the polynomial f(z) = anz™ +
an_12" + - 4 ag, an # 0, lie in the circle |z| < r, where r is the posi-
tive zero of the equation

—lan|z™ + |an_1]z" "t + -+ + |a1|z + |ao| = 0.
Lemma 2.3. Let u be an integer > 1. The polynomial
Gu(z) = 22v1 — v+l _ v 1
has only one real zero > 1 and this is a zero of mazimum modulus.

Proof. By Descartes’ rule of signs, G, (z) has at most one positive zero. Since
simple calculations yield G,,(1) < 0 and G%,(z) > 0 on (1,00), we have only one
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positive zero g,, > 1. Now we show that G, (2) has no negative zero. Suppose
that u is even. If —1 < z < 0, then

(2.1) Gu(z) = 22T —1-2%(2+1) <0.
If z < —1is a zero of G,(z), it contradicts the equality

wil 20+ 1
Ty
since its left side is negative and its right side is positive. Suppose that u is
odd. If —1 < z < 0, then it contradicts (2.2), since its left side is positive and
its right side is negative. If z < —1, then, by (2.1), G,(z) < 0. Hence there

are no negative zeros of G, (z). Moreover, by Theorem 2.2, all zeros of G, (z)
lie in the disk |z]| < g,. O

(2.2)

We use Lemma 2.3 to prove the following proposition.

Proposition 2.4. Let u be an integer > 1. The polynomial
Gu(y) = (=1 + y*)Uumr(y)Vuly) - 1

has only one real zero 1/2(g, + 1/g.), where g, is the real (positive) zero of
Gu(z) = 22utl — putl _ v 1,

Proof. The formula

_ V- - -V -

yields

= 1
(2'4) z2u+1Gu(y) — Z(2‘,2u+1 _ zu-‘,—l — ¥ _ 1)(z2u+1 + Zu+1 4% — 1)7
where

1 1
(2.5) z=y+Vy? -1, i.e.,y:i(z+;).

In (2.4), Gu(z) = 22%+! — 2%+l _ 2% _1is the reciprocal polynomial of —(z2%+1 +
¥t 4+ 2% — 1), and, by (2.5), y is real when z = g,. Next we show that y is
nonreal when z is a nonreal zero of G, (z). We observe that, for z = a +ib (b #
0), we have

- o(1(-+1)) =2 (F225).

So in order to show that the left side of (2.6) is not equal to zero, we need to
show that the polynomial G,(z) has no zero on the unit circle. Suppose that
2o is a zero of G, (z) = 0 and |29 = 1. Then we have |28 — 1| = |25 + 1], s0 2§
must lie on the imaginary axis and 2z} =i or —4. Then z9g = —1. In fact, if
z§ =1, then

0= Gu(Zo) =—29—tzg—1—1= —(Zo -+ 1)(’L + ].),
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and, if z¥ = —i, then, by a similar calculation, 0 = —(zo + 1)(i + 1). But
G, (—1) # 0 which leads a contradiction. Hence we conclude that y is nonreal
when z is a nonreal zero of G,(z). Since G,(z) has only one real (positive)
zero, it follows from (2.4) and (2.5) that the result holds. 0O

Next, we consider the case m = 2u of Theorem 2.1.
Lemma 2.5. Let u be an integer > 1. The integral polynomial
z4u _ Z2u+1 _ 4Z2u _ z2u—1 +1

(z +1)2

has only two real (positive) zeros h, and 1/h, for some h, > 1, and no zero
on the unit circle.

H,(2)=

Proof. By Descartes’ rule of signs, (z + 1)?H,(z) has at most two positive
zeros. Since (z + 1)2H,(z) is self-reciprocal and H,(1) < 0, (z + 1)>Hu(2)
has exactly two positive zeros. Use Descartes’ rule of signs to deduce that
(z + 1)2H, () has either 0 or 2 negative zeros counting multiplicity. Since —1
is & zero with multiplicity 2, we conclude that H, has no negative zeros. Also
one can use the triangle inequality for complex numbers to deduce immediately
that (z + 1)2H,(z) can only have zeros on the unit circle that are real. More
specifically, we use that

21+ 22 + -+ zn| <za] + 22| + -0+ [0

with equality if and only if all nonzero z; have the same argument. Letting

21 = (2 + 1)2Hy(2), 2o = —2%%, 23 = 22t 24 = 2%! and 25 = -1 (and
consider what it means if 22%“*! and 22“~! have the same argument) completes
the proof. a

We use Lemma 2.5 to prove the following proposition.
Proposition 2.6. Let u be an integer > 1. The polynomial
Hu(y) = 2(-1+y)Ui_,(y) - 1
has only one real zero 1/2(hy + 1/hy,), where hy, is the real zero > 1 of (z +
l)zHu(Z) — z4u _ Z2u+1 _ 4z2u _ Z2u—1 +1.
Proof. By using (2.3), we calculate
(27) z2u+1(z + I)qu(y) — Z4u _ Z2u+1 _ 4Z2u _ z2u—1 + 1’

where

1 1
(2.8) z=y+y? -1, i.e.,y:§<z+;>.

We see that the polynomial (z + 1)2H,(z) = 24 — 22! — 427" — 2241 + 1 is
self-reciprocal, and, by Lemma 2.5, H,(z) has only two real zeros h, and 1/h,
for some h, > 1. By (2.8), y is real when z = h,, or z = 1/h,. Next we show
that y is nonreal when z is a nonreal zero of (2 + 1)?H,(z). By (2.6), we only
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need to show that the polynomial (2 + 1)2H,(z) has no zero on the unit circle.
But this is true by Lemma 2.5. Hence we conclude that y is nonreal when z is
a nonreal zero of (z + 1)2H,(z). Since H,(z) has only one real (positive) zero,
the result holds. O

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. Let
x n

(29) y:2n(n—1)_n—1'

Then, by (1.4) and (1.5),
A2u+1,n(x) - 4(”(77« - 1))2u+1éu(y)’
Bayun(z) = (n(n - 1))2u+1£,u(y)’

where Gy (y) = (~1+y*)Uu—1(y)Uu(y) — 1 and Hy(y) = 2(-1+y)U2_, (y) - 1.
By (2.9), = 2n((n — 1)y + n). So, by Proposition 2.4 and Proposition 2.6, we
have )
Agutin (2n((n — 1)1/2(g, + g71) + n))
=Asutin (20% +n(n — 1)(gu + 9.1)) =0
and
Baun (2n((n — 1)1/2(hy + h3') +n))
=Boun (2n2 +n(n —1)(h, + h;l)) =0,
where g, is the real (positive) zero of z2%t! — zv+l — v _ 1 = (0 and b, is
the real zero > 1 of 2% — 22%+1 — 472« — ;2u=1 1 1 = 0. Here 1/2(g, + g3 ")
and 1/2(h, + h;') are the only real zeros of G, (y) and H,(y), respectively.

Since Poyyin,2 and Pay 2 divide Asyy1,n and By, n, respectively, the result
follows. a
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