REPRESENTATION OF SOME BINOMIAL COEFFICIENTS BY POLYNOMIALS

SEON-HONG KIM

ABSTRACT. The unique positive zero of $F_m(z):=z^{2m}-z^{m+1}-z^{m-1}-1$ leads to analogues of $2\binom{2n}{k}$ (k even) by using hypergeometric functions. The minimal polynomials of these analogues are related to Chebyshev polynomials, and the minimal polynomial of an analogue of $2\binom{2n}{k}$ (k even >2) can be computed by using an analogue of $2\binom{2n}{2}$. In this paper we show that the analogue of $2\binom{2n}{2}$ is the only real zero of its minimal polynomial, and has a different representation, by using a polynomial of smaller degree than $F_m(z)$.

1. Introduction

To what extent can a sum and its factorization both be known? More precisely, if A and B belong to a ring, to what extent can we simultaneously know the factorizations of A, B and C where A+B=C? There is an inverse problem: Given C, find A and B with factorizations of a specific type such that A+B=C. Cases in which the complete factorizations of each of A, B and C are known we refer to as cases of "complete" information. For various results and examples in case of polynomials about this, see [1].

An example of complete information is that

$$\phi(q) = \prod_{k=1}^{\infty} \left(\frac{1 + q^{2k-1}}{1 - q^{2k-1}} \right)^2$$

satisfies

$$\left(\phi(q^2)\right)^2 = \frac{1}{2} \left(\phi(q) + \frac{1}{\phi(q)}\right).$$

A simpler result of this nature is

(1.1)
$$e^{iz} + e^{-iz} = 2\cos z.$$

Received July 27, 2006.

²⁰⁰⁰ Mathematics Subject Classification. Primary 11B65; Secondary 05A10.

 $[\]it Key\ words\ and\ phrases.$ binomial coefficients, analogues, minimal polynomial, Chebyshev polynomial.

This Research was supported by the Sookmyung Women's University Research Grants 1-0703-0178.

Here each summand on the left has no zeros, while the right is

$$2\prod_{n=0}^{\infty}\left(1-\frac{4}{\pi^2}\left(\frac{z}{2n+1}\right)^2\right),$$

which has infinitely many zeros. The sum in (1.1) and its companion for the sine function leads us to consider sums such as

$$\left(1+\frac{z}{n}\right)^n \pm \left(1-\frac{z}{n}\right)^n,$$

since $e^z = \lim_{n\to\infty} \left(1 + \frac{z}{n}\right)^n$. Upon rescaling z this suggests the study of determining the factorization of polynomials of the form $f(z+1) \pm f(z-1)$. The simplest form of this seems to be

$$(1.2) (z+1)^n + (z-1)^n.$$

It is natural to ask a question how well the coefficients of (1.2) can be represented by some polynomials? As an answer of this, Author [2] introduced a new analogue (not a q-analogue) of the doubled binomial coefficient $2\binom{2n}{k}$ (k even) by using a unique positive zero r_m of $F_m(z) = z^{2m} - z^{m+1} - z^{m-1} - 1$. Here the modulus of r_m is the biggest among all zeros of $F_m(z)$, and, as $m \to \infty$,

$$\begin{cases} r_m \to 1, \\ r_m^m \to 1 + \sqrt{2}. \end{cases}$$

For a positive even integer $k \leq n$, author [2] defined the (m,k)-analogue of $2\binom{2n}{k}$ by

(1.3)
$$a(m,k) = 2\binom{n}{\frac{k}{2}} {}_{2}F_{1}\left(-\frac{k}{2}, -\frac{1}{2}(2n-k); \frac{1}{2}; \frac{1}{4}\left(r_{m} + r_{m}^{-1}\right)^{2}\right)$$
$$= 2\binom{2n}{k} + f(m,k), \text{ say}$$

by using hypergeometric functions. Here, as $m \to \infty$, we have $f(m,k) \to 0$. Author [2] defined $P_{m,n,k}(x)$ to be the minimal polynomial of a(m,k) that is related to Chebyshev polynomials. In fact, author [2] first studied the case k=2 and showed how to compute the minimal polynomial of an analogue of $2\binom{2n}{k}(k>2)$ by using this. For the case k=2, author [2] proved

Theorem 1.1. Let u be an integer > 1. Define

$$W_{u,n}(x) := 4(n(n-1))^{2u+1}(-1+x^2)U_{u-1}(x)U_u(x),$$

$$Y_{u,n}(x) := 2(n(n-1))^{2u-1}(-1+x)U_{u-1}^2(x),$$

where $U_u(x)$ is the Chebyshev polynomial of the second kind of degree u. Then the polynomials $P_{2u+1,n,2}(x)$ and $P_{2u,n,2}(x)$ divide the integral polynomials

$$(1.4) A_{2u+1,n}(x) := W_{u,n} \left(\frac{x}{2n(n-1)} - \frac{n}{n-1} \right) - 4(n(n-1))^{2u+1},$$

and

(1.5)
$$B_{2u,n}(x) := Y_{u,n} \left(\frac{x}{2n(n-1)} - \frac{n}{n-1} \right) - (n(n-1))^{2u-1},$$

respectively.

The main purpose of this paper is to show that a(m,2), the analogue of $2\binom{2n}{2}$, is the only real zero of its minimal polynomial, and has a different representation, by using a polynomial of smaller degree than $F_m(z)$. While showing this, we will see zero distributions of some interesting polynomials. In addition, many related applications about the topics in this paper can be seen in [3].

2. Results and proofs

In this section we show that

$$a(m,2) = 2n^2 + n(n-1)(r_m^2 + r_m^{-2})$$

in (1.3) is the only real zero of $P_{m,n,2}$ and obtain another representation of a(m,2).

Theorem 2.1. Let m be an integer ≥ 2 . Then a(m,2) is the only real zero of $P_{m,n,2}$. Moreover, for any positive integer u,

$$a(2u+1,2) = 2n^2 + n(n-1)(g_u + g_u^{-1}),$$

$$a(2u,2) = 2n^2 + n(n-1)(h_u + h_u^{-1}),$$

where g_u is the (positive) real zero of $z^{2u+1} - z^{u+1} - z^u - 1 = 0$, and h_u is the real zero > 1 of $\frac{z^{4u} - z^{2u+1} - 4z^{2u} - z^{2u-1} + 1}{(z+1)^2} = 0$.

To prove this, we will investigate zero distributions of some polynomials. We first consider the case m = 2u + 1.

For the proof of following Lemma, we will need the theorem of Cauchy (for the proof of this, see p. 122 of [4]).

Theorem 2.2 (Cauchy). All the zeros of the polynomial $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$, $a_n \neq 0$, lie in the circle $|x| \leq r$, where r is the positive zero of the equation

$$-|a_n|x^n + |a_{n-1}|x^{n-1} + \dots + |a_1|x + |a_0| = 0.$$

Lemma 2.3. Let u be an integer ≥ 1 . The polynomial

$$G_u(z) = z^{2u+1} - z^{u+1} - z^u - 1$$

has only one real zero > 1 and this is a zero of maximum modulus.

Proof. By Descartes' rule of signs, $G_u(z)$ has at most one positive zero. Since simple calculations yield $G_u(1) < 0$ and $G'_u(z) > 0$ on $(1, \infty)$, we have only one

positive zero $g_u > 1$. Now we show that $G_u(z)$ has no negative zero. Suppose that u is even. If -1 < z < 0, then

(2.1)
$$G_u(z) = z^{2u+1} - 1 - z^u(z+1) < 0.$$

If z < -1 is a zero of $G_u(z)$, it contradicts the equality

$$(2.2) z^{u+1} = \frac{z^u + 1}{z^u - 1},$$

since its left side is negative and its right side is positive. Suppose that u is odd. If -1 < z < 0, then it contradicts (2.2), since its left side is positive and its right side is negative. If $z \le -1$, then, by (2.1), $G_u(z) < 0$. Hence there are no negative zeros of $G_u(z)$. Moreover, by Theorem 2.2, all zeros of $G_u(z)$ lie in the disk $|z| \le g_u$.

We use Lemma 2.3 to prove the following proposition.

Proposition 2.4. Let u be an integer ≥ 1 . The polynomial

$$\tilde{G}_u(y) = (-1 + y^2)U_{u-1}(y)U_u(y) - 1$$

has only one real zero $1/2(g_u + 1/g_u)$, where g_u is the real (positive) zero of $G_u(z) = z^{2u+1} - z^{u+1} - z^u - 1$.

Proof. The formula

(2.3)
$$U_u(y) = \frac{(y + \sqrt{y^2 - 1})^{u+1} - (y - \sqrt{y^2 - 1})^{u+1}}{2\sqrt{y^2 - 1}},$$

yields

$$(2.4) z^{2u+1}\bar{G}_u(y) = \frac{1}{4}(z^{2u+1} - z^{u+1} - z^u - 1)(z^{2u+1} + z^{u+1} + z^u - 1),$$

where

(2.5)
$$z = y + \sqrt{y^2 - 1}$$
, i.e., $y = \frac{1}{2} \left(z + \frac{1}{z} \right)$.

In (2.4), $G_u(z) = z^{2u+1} - z^{u+1} - z^u - 1$ is the reciprocal polynomial of $-(z^{2u+1} + z^{u+1} + z^u - 1)$, and, by (2.5), y is real when $z = g_u$. Next we show that y is nonreal when z is a nonreal zero of $G_u(z)$. We observe that, for z = a + ib ($b \neq 0$), we have

(2.6)
$$\Im\left(\frac{1}{2}\left(z+\frac{1}{z}\right)\right) = \frac{b}{2}\left(\frac{a^2+b^2-1}{a^2+b^2}\right).$$

So in order to show that the left side of (2.6) is not equal to zero, we need to show that the polynomial $G_u(z)$ has no zero on the unit circle. Suppose that z_0 is a zero of $G_u(z) = 0$ and $|z_0| = 1$. Then we have $|z_0^u - 1| = |z_0^u + 1|$, so z_0^u must lie on the imaginary axis and $z_0^u = i$ or -i. Then $z_0 = -1$. In fact, if $z_0^u = i$, then

$$0 = G_u(z_0) = -z_0 - iz_0 - i - 1 = -(z_0 + 1)(i + 1),$$

and, if $z_0^u = -i$, then, by a similar calculation, $0 = -(z_0 + 1)(i + 1)$. But $G_u(-1) \neq 0$ which leads a contradiction. Hence we conclude that y is nonreal when z is a nonreal zero of $G_u(z)$. Since $G_u(z)$ has only one real (positive) zero, it follows from (2.4) and (2.5) that the result holds.

Next, we consider the case m = 2u of Theorem 2.1.

Lemma 2.5. Let u be an integer > 1. The integral polynomial

$$H_u(z) = \frac{z^{4u} - z^{2u+1} - 4z^{2u} - z^{2u-1} + 1}{(z+1)^2}$$

has only two real (positive) zeros h_u and $1/h_u$ for some $h_u > 1$, and no zero on the unit circle.

Proof. By Descartes' rule of signs, $(z+1)^2H_u(z)$ has at most two positive zeros. Since $(z+1)^2H_u(z)$ is self-reciprocal and $H_u(1) < 0$, $(z+1)^2H_u(z)$ has exactly two positive zeros. Use Descartes' rule of signs to deduce that $(z+1)^2H_u(z)$ has either 0 or 2 negative zeros counting multiplicity. Since -1 is a zero with multiplicity 2, we conclude that H_u has no negative zeros. Also one can use the triangle inequality for complex numbers to deduce immediately that $(z+1)^2H_u(z)$ can only have zeros on the unit circle that are real. More specifically, we use that

$$|z_1 + z_2 + \dots + z_n| \le |z_1| + |z_2| + \dots + |z_n|$$

with equality if and only if all nonzero z_j have the same argument. Letting $z_1=(z+1)^2H_u(z),\ z_2=-z^{4u},\ z_3=z^{2u+1},\ z_4=z^{2u-1}$ and $z_5=-1$ (and consider what it means if z^{2u+1} and z^{2u-1} have the same argument) completes the proof.

We use Lemma 2.5 to prove the following proposition.

Proposition 2.6. Let u be an integer > 1. The polynomial

$$\bar{H}_u(y) = 2(-1+y)U_{u-1}^2(y) - 1$$

has only one real zero $1/2(h_u + 1/h_u)$, where h_u is the real zero > 1 of $(z + 1)^2 H_u(z) = z^{4u} - z^{2u+1} - 4z^{2u} - z^{2u-1} + 1$.

Proof. By using (2.3), we calculate

(2.7)
$$z^{2u+1}(z+1)^2 \bar{H}_u(y) = z^{4u} - z^{2u+1} - 4z^{2u} - z^{2u-1} + 1,$$

where

(2.8)
$$z = y + \sqrt{y^2 - 1}$$
, i.e., $y = \frac{1}{2} \left(z + \frac{1}{z} \right)$.

We see that the polynomial $(z+1)^2H_u(z)=z^{4u}-z^{2u+1}-4z^{2u}-z^{2u-1}+1$ is self-reciprocal, and, by Lemma 2.5, $H_u(z)$ has only two real zeros h_u and $1/h_u$ for some $h_u>1$. By (2.8), y is real when $z=h_u$ or $z=1/h_u$. Next we show that y is nonreal when z is a nonreal zero of $(z+1)^2H_u(z)$. By (2.6), we only

need to show that the polynomial $(z+1)^2H_u(z)$ has no zero on the unit circle. But this is true by Lemma 2.5. Hence we conclude that y is nonreal when z is a nonreal zero of $(z+1)^2H_u(z)$. Since $H_u(z)$ has only one real (positive) zero, the result holds.

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. Let

(2.9)
$$y = \frac{x}{2n(n-1)} - \frac{n}{n-1}.$$

Then, by (1.4) and (1.5),

$$A_{2u+1,n}(x) = 4(n(n-1))^{2u+1}\bar{G}_u(y),$$

$$B_{2u,n}(x) = (n(n-1))^{2u+1}\bar{H}_u(y),$$

where $\bar{G}_u(y) = (-1+y^2)U_{u-1}(y)U_u(y) - 1$ and $\bar{H}_u(y) = 2(-1+y)U_{u-1}^2(y) - 1$. By (2.9), x = 2n((n-1)y + n). So, by Proposition 2.4 and Proposition 2.6, we have

$$A_{2u+1,n} \left(2n((n-1)1/2(g_u + g_u^{-1}) + n) \right)$$

= $A_{2u+1,n} \left(2n^2 + n(n-1)(g_u + g_u^{-1}) \right) = 0$

and

$$B_{2u,n} \left(2n((n-1)1/2(h_u + h_u^{-1}) + n) \right)$$

= $B_{2u,n} \left(2n^2 + n(n-1)(h_u + h_u^{-1}) \right) = 0,$

where g_u is the real (positive) zero of $z^{2u+1} - z^{u+1} - z^u - 1 = 0$ and h_u is the real zero > 1 of $z^{4u} - z^{2u+1} - 4z^{2u} - z^{2u-1} + 1 = 0$. Here $1/2(g_u + g_u^{-1})$ and $1/2(h_u + h_u^{-1})$ are the only real zeros of $\bar{G}_u(y)$ and $\bar{H}_u(y)$, respectively. Since $P_{2u+1,n,2}$ and $P_{2u,n,2}$ divide $A_{2u+1,n}$ and $B_{2u,n}$, respectively, the result follows.

References

- S.-H. Kim, Factorization of sums of polynomials, Acta Appl. Math. 73 (2002), no. 3, 275-284.
- [2] _____, The analogues of some binomial coefficients, Indian J. Pure Appl. Math. 34 (2003), no. 12, 1771-1784.
- [3] T. Kim, H. K. Pak, C. S. Ryoo, S. H. Rim, and L. C. Jang, Introduction to q-Number Theory, Kyo Woo Sa, Seoul, 2006.
- [4] M. Marden, Geometry of Polynomials, Second edition, Mathematical Surveys, No. 3 American Mathematical Society, Providence, R.I., 1966.

DEPARTMENT OF MATHEMATICS SOOKMYUNG WOMEN'S UNIVERSITY SEOUL 140-742, KOREA

E-mail address: shkim17@sookmyung.ac.kr