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VIABILITY FOR SEMILINEAR DIFFERENTIAL EQUATIONS
OF RETARDED TYPE

QIXIANG DONG AND GANG L1

ABSTRACT. Let X be a Banach space, A : D(A) C X —+ X the generator
of a compact Cp-semigroup S(¢) : X — X,t > 0, D a locally closed subset
in X, and f: (a,b) x C([—¢,0]; X) — X a function of Caratheodory type.
The main result of this paper is that a necessary and sufficient condition
in order that D be a viable domain of the semilinear differential equation
of retarded type
u'(t) = Au(t) + f(t,ue),t € [tosto + T, uee = ¢ € C([—¢,0); X)

is the tangency condition

1i%i[)nf h=1d(S(R)v(0) + hf(t,v); D) =0

for almost every t € (a,b) and every v € C([—q,0]; X) with v(0) € D.

1. Introduction

Let X be a real Banach space, A : D(A) C X — X the infinitesimal
generator of a Cy-semigroup S(¢) : X — X,¢ > 0, D a nonempty subset in X.
Let ¢ and T be positive numbers and —oco < a < b < +oo. Given ty € (a,b),
a function z : [to — ¢, t0 + T] = X and t € [to,to + T, define z; : [-¢,0] = X
by z:(8) = x(t + 8) for all § € [—¢,0]. In this paper we discuss the semilinear
differential equation of retarded type:

(1.1) u'(t) = Au(t) + f(t,w), t€ [to,to+T)
with the initial condition
(12) Uty = ¢ € C([_Q,O],X),

where C'([—q,0]; X ) denotes the Banach space of continuous X-valued functions
on [—g,0] with supermum norm, f : (a,b) x C([—¢,0]; X) = X and ty € (a,b).

We say that D is viable domain for (1.1) if for each {3 € (a,b), and ¢ €
C([—q,0]; X) with ¢(0) € D, there exists at least one mild solution u : [ty —
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¢,to+T] = X to (1.1) and (1.2) with T = T'(to,¢) > 0,to + T < b, such that
u(t) € D for all ¢ € [to,to + T]. We recall that by mild solution to (1.1) and
(1.2) we mean a continuous function u : [tg — g, to + 7] — X, satisfying u;, = ¢,
and

(1.3) u(t) = S(t — tg)¢(0) +/t S(t — s)f(s,us)ds

for t € [to,to + T]
The viability problem for the differential equation

(1.4) w (t) = Au(t) + F(t,u(t)), t € [to,to + T

(1.5) u(to) =x9 € D

has been studied by many authors by using various frameworks and techniques.
In this respect it should be noted the pioneering work of Nagumo [15] who
considered the finite dimensional case, A = 0 and F is continuous. In this
context he showed that a necessary and sufficient condition in order that D be
a viable domain for (1.3) is the following tangency condition:

lirlﬁionf h~d(z + hF(t,z); D) =0

for each (t,x) € (a,b) x D. It is interesting to note that Nagumo’s result
(or some variant of it) has been rediscovered several times among others by
Brezis [4], Crandall 7], Hartman [9], and Martin [14]. For the development in
this area, we refer the readers to Ursescu [22], Pavel [19], Cérja and Marques [5],
Cérja and Vrabie [6]. Brief reviews of the main contributions in this area can
be found in [5] and [6]. We emphasize Pavel’s main contribution who was
the first who formulated the corresponding tangency condition applying to the
semilinear case. More precisely, Pavel [19] showed that, whenever A generates
a compact Cp-semigroup and F is continuous on (a, b) x D, where D is locally
closed in X, a sufficient condition for viability is

1}% h~d(S(h)x + hF(t,z); D) = 0

for each (¢,z) € (a,b) x D.

Concerning the differential equations of retarded type, the development
was initialed about existence and stability by Travis and Webb [20], [21] and
Webb [23], [24]. Since such equations are often more realistic to describe natural
phenomena than those without delay, they have been investigated in variant as-
pects by many authors(see, e.g., [1], [2], [11], [13] and references therein). Iacob
and Pavel [10] discussed viability problem for semilinear differential equations
of retarded type. They proved that, whenever A generates a compact Co-
semigroup and f is continuous from (a,b) x C([—¢,0]; X) into X a necessary
and sufficient condition for viability for (1.1) is

lim b~ d(S(h)o(0) + hf (t,v); D) = 0
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for each t € (a,b), each v € C([—¢,0]; X) with v(0) € D, where D is a locally
closed subset in X.

The aim of this paper is to discuss the viable problem of the semilinear
differential equation of retarded type (1.1). We prove that a necessary and
sufficient condition in order that D be a viable domain of (1.1) is the tangency
condition. We only suppose that f is of Caratheodory type. Our result extends
and improves that of Iacob and Pavel [10] who considered the case in which f
is continuous, and also extends the well-known existence result of Hale [8] who
considered the case in which X is finite dimensional and A = 0. Moreover,
using a standard argument based on Zorn’s Lemma, we get the existence of
noncontinuable(saturated) mild solutions.

2. Preliminaries

Let X be areal Banach space, A: D(A) C X — X generates a Cy-semigroup
S(t): X = X,¢t > 0. It is well known that in this case S(¢),t > 0 is exponen-
tially bounded, i.e., there are constants C' > 1 and w > 0 such that

ISl < Cet, vt >o0.

Moreover, if S(t),t > 0 is a compact semigroup (i.e., S(t) maps bounded sub-
sets into relatively compact subsets for ¢ > 0), then S(¢) is continuous in the
uniformly operator topology for ¢t > 0 (see Pazy [19]) and X is separable (see
[5]). For more details of semigroups of linear operators, we refer the readers to
Pazy [19].
For convenience of future reference, we list the following conditions:
(Al) for each v € C([~q,0]; X), the function f(-,v) : (a,b) = X is measur-
able on (a, b);
(A2) for almost every(a.e.) t € (a,b), f(t,*) : C([~q,0]; X) — X is continu-
ous on C([—q,0]; X);
(A3) for every r > 0, there is a function m, € L(a, b; X) such that || f(¢,v)|| <
my(t) for a.e. t € (a,b) and every v € C([—¢,0]; X) with |jv|| < r.
(T) (Tangency condition)

(2.1) lir’rlllionf h~1d(S(h)v(0) + hf(t,v); D) = 0
for a.e. t € (a,b) and all v € C([—q,0]; X) with v(0) € D, where d(z, D)

denotes the distance from z € X to the subset D C X.
Since the distance is non-expansive, i.e.,

ld(z, D) —d(y, D)| <le —yll,  Va,y€ X,
by standard arguments(see {10}, {17]), Condition (T) is equivalent to

t+h
(2.2) liriliionf R™1d(S(h)v(0) + h/t S(t+h—s)f(t,v)ds; D) =0

for a.e. t € (a,b) and all v € C([—¢,0]; X) with v(0) € D.
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We say that the function f is of Caratheodary type if f satisfies (A1)-(A3).
A Caratheodory type function has the following Scorza Dragoni property which
is nothing but the special case of [3], [12]. We denote by A the Lebesgue measure
on R and by £, the collection of all Lebesgue measurable sets in R.

Theorem 2.1. Let X,Y be separable metric spaces and I = (a,b) or I €
L({a,b)). Let f: I x X =Y be a function such that f(-,x) is measurable for
every x € X and f(t,-) is continuous for almost every t € I. Then, for each
€ > 0, there exists a compact subset K C I such that A(I \ K) < ¢ and the
restriction of f to K x X is continuous.

Suppose that u : (a — ¢,b) —» X is continuous. Then the mapping ¢ — uy,
from (a,b) into C([~gq,0]; X} is also continuous. The following result is a kind
of variance of Lebesgue derivative type, which is useful in the sequel.

Theorem 2.2. Assume that D is a nonempty subset of a separable Banach
space X, S(t) is a Co-semigroup on X and f : (a,b) x C([—¢,0;X) > X is a
function which satisfies the conditions (A1), (A2) and (A3). Then there exists
a negligible subset Z of (a,b) such that, for every t € (a,b) \ Z, one has

t+h

(2.3) llgl(} h! ) S(t+h—38)f(s,us)ds = f(t,us)

for all continuous functions u: (a,b) = X.

The proof of Theorem 2.2 is similar to that of [5] Theorem 2.3. So we omit
it.

3. Main result

Now we are ready to state our main result of this paper.

Theorem 3.1. Let D C X be a locally closed subset in a general Banach
space, f : {a,b) x C([—q,0;X) = X a function satisfying (A1)-(A3), and
let A: D(A) — X be the infinitesimal generator of a compact Co-semigroup
S{t) : X = X,t > 0. Then a necessary and sufficient condition in order that
D be a viable domain of (1.1) is the tangency condition (T).

Proof of necessity. Let Z be given by Theorem 2.2, let ¢y € (a,b) \ Z. Let v €
C([—¢,0]; X) such that v(0) € D. By hypothesis, there exists T = T'(tg,v) > 0
with to + T < b and a continuous function u satisfying (1.3) with ¢ = v. Since
u(to + h) € D for all h € [0,T], we have

h=d(S(h)v(0) + hf(to,v); D)
RHIS(R)u(0) + hf (to, v) — ulto + h)|
1£(to,v) = =1 [7* S(to + h — 5) £ (5, us)ds]|.

Letting h | 0, one obtains the condition (T). a

(3.1)

IAIA
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In the proof of sufficiency, the following lemma is needed. We first note that,
since D is locally closed, there is a real number r > 0 such that D N B(¢(0),r)
is closed. On the basis of the continuity of ¢ on [—¢, 0], there is a real number
T > 0 such that

(32 19(6) — 66)] < 57, V81,0 € [-0,0}16, ~ o] < T
Set R =r + {|¢(0)]| and

to+T
(3.3) M= / m(t)dt,
to

where mp is the function appeared in (A3). Moreover, we may choose T small
enough such that ¢, + T < b and

(3.4) max [|5(8)¢(0) — ¢(0)|| + N(M +T) <

r, (N =CeT).
0<t<T

DO | =

Lemma 3.2. Suppose that the hypotheses of Theorem 3.1 hold. Suppose further
that f : (a,b) x C([—q,0]; X) = X satisfies the tangency condition (T). Then
for each to € (a,b), ¢ € C([—q,0); X) with ¢(0) € D, each positive integer
n, and each open subset L, C R with Z C L, and A(L,) < L, there ezist a
t € [to,to +T)\ Z, an nondecreasing sequence {t?}2, C [to,to + T], and an
approzimate solution u™ on [to,to + T in the following sense:
(i) 5 =to, t7y —t7 =dF < L limi oo 7 = to + T
(i) ufy, = ¢,u”(t}) = 2 € DN B(¢(0),7);
(iil) hn(s) = f(tP,ul) in case t* & L, while ho(s) = f(i, ugn) in case
P €L, forse [;f?,t?ﬂ);
(iv) w™(t) = S(t—t7)al + [} S(t— 8)hn(s)ds + (t — t7)p} for t € [t7,47,,],
where ¥ € D and p? € X with lp?l < L. Moreover, ui € B(g,m) N
C([~q,0]; X).

Proof. Let ty € (a,b), ¢ € C([—¢,0]; X) and n € N be given. We may assume
that (2.2) and (2.3) hold for each t € [to,to + T]\ Ln. Fix t € [to,to + T]\ Ln.
We shall construct «™ and t? by induction. Set t§ = to,u™(t§) = ¢(0) =
x(},u{‘g = ¢. To simplify notation, we drop n as a superscript for ¢;,z;,u, p;
etc. Suppose that u is constructed on [ty — ¢,t;]. Then we define ¢;.; in the
following manner. If t; = to + T, set t;41 = to + T, and if t; < to + T, then we
define ¢, 1 as the following two cases.
Case 1:t; € L,,. Set

6;= sup{h e (0,%]:t;+h <ty+T,[tit; + h) C Ly,
d(S(h)z; + fti#h S(ti +h—s)f(t,u)ds; D) < 2=}
In view of (2.1) and the fact that

(3.5)

t;+h
limh ! / S(ti+h—8)f(t,u,)ds = f(E,us,),
h{0 "
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one can easily see that §; > 0. Choose a number d; € (%&, d;], such that

Qu

ti+d; .
(36)  d(S(d)zi + / S(t; + di — 5)f (F,us,)ds; D) < =

t;

|

Define t;11 = t; + d;. By (3.6), there is z;; € D such that

tit1 _ d;
IS+ [ Sltis — 5)1 e )ds = sl < -
t

T

Consequently, ;11 can be written as

tit1 _
(37) Tit1 = S(tH.l - ti).’Ei + / S(ti+1 - S)f(t, ug, )ds + (ti-f-l —ti)pi

t;
with [|ps|] < L. In this case we define u on [t;, ;1] as

(3.8) u(t) = S(t — t:)a; + tﬂhﬂﬁﬁmg@+@—nm%

t;
Case 2: t; & L,. In this case we set

6 = sup{h€ (0,%]:t:i+h <to+T,
d(S(h).’EZ + ft_"+h S(ti +h— S)f(ti,uti)ds; D) < %}

t;

(3.9)

By (2.2) we see that &; > 0. Choose d; € (34;,4;], such that

ti+d; .
(3.10) d(S(d;)z; + / S(t; +d; — s)f(ts,us,)ds; D) < 2%%
t

Define t;11 = t; + d;. By (3.10), there is z;11 € D such that
tit1 dt’
IS (dsi): +/ S(tiys — s)f(ts, us,)ds — i ]| < -
t;

Consequently, x;11 can be written as

tip1
(3.11) Tit1 = S(ti_H — ti)xi -+ / S(ti+1 — s)f(ti,uti)ds + (t,‘_|.1 - ti)pi

t;

with ||p;|| < 2. In this case we define u on [t;, t;+1] as
i
(3.12) u(t) =St —t;)z; + / S(t — 8)f(t;,us,)ds + (t — t:)p;-
t;
Setting h(s) = f(f,us,) in case t; € L,, and h(s) = f(ti,us,) in case t; & L,

for s € [t;,tit1]. Let us define the step functions @, and 8, as an(s) = ¢; in
case t; € Ly, an(s) =t in case t; € L, and B,(s) = t; for s € [t;,t;+1). Then
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hn can be written as h(s) = f(a(s), ug(s)). By the induction hypotheses, u can
be written in the form

u(t) = St —t0)$(0) + if Jir S (t — s)h(s)ds

+ft (t — s)h(s)ds + Z (tms1 — tm)S(t = tms1)Pm
+(t —ti)pi.

Let us check that uy,,, € B(¢,r). To do this, we have to estimate ||ju,,, (8)—
#(8)|| for each 6 € [~q,0]. If —q < @ <ty — t;y1, then by (3.2),

a1 8) = 9O = JJulto + (tisr + 6 — 1)) — SO
= |[¢(tis1 + 6 — to) — 6(0)]| < ir <

since ti+1 — 1o S T.If to — ti+1 S 0 S 0, then ti+1 +6 Z to, 80 by (313), (32)
and (3.4), we have

[lusi,, (6) — S(B)]]
< [lu(tivs +6) — ¢(0)1 +116(0) — ¢(@) I

< (1S (s +8 — t0)$(0) — O + N 3 / " (s) s

+ D (b1 = tm)Nlpml| + 6(0) ~ $(8)]
[[S(tir1 + 6~ 10)8(0) — 4(0)|| + N(M +T) + ||¢(0) — &(6)]|
1

—r+1 =
g Tt =T

IN

IA

and hence u;, ., € B(¢,r). Using again (3.13), we derive
1
[u(t) — @(O)I < 115t — 10)$(0) = (O)| + N(M +T) < 5r <7

for all t € [to,tiq1], i.e., u(t) € B(¢(0),r) for t € [to,ti+1]. This remark, along
with the fact that ¢ € C([~¢,0]; X), implies that u,,,, € B(¢,r)NC([—g,0]; X).
Thus, properties (ii), (iii) and (iv) are verified.

To prove property (i), we first note that lim; ,o #; exists, since {t;}32, is
increasing and t; < to + T for all ¢ = 1,2,.... Suppose that lim;_,.. t; = t*,
then t* < tq+ T. We have to prove t* = tg + T. To do this, we first show that
lim; o 2; also exists. In fact, let j > 4. Using (3.13) for t = ¢; and t = t;, we
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derive
la; —aill < 1St — to) (S(t; — )8(0) — S(O)]
+ Z SISt — $)(S(t5 — ta)h(s) — h(s))llds
+ Z:o tmt1 — tm)”S(tz - tm+1)(s(tj - ti)pm _pm)”
+ Ji W fim+ S(t; — s)h(s)ds|
(3.14) + 'S (tmrs = tm)1SC; — ts2 )

IN

N||s<t —1:)6(0) — $(0)]
+N z SIS (5 ~ ti)h(s) — h(s)||ds

+N E (tm+1 — tm)|IS(t; = t:)Pm — Pmll-

+th mR s)ds + N(t; — t;) %

Now given € > 0. Since mg € L(a, b; X), there is n > 0 such that ftt, mp(s)ds
<e/(5N)fort ,t" € (a,b) with |t' —¢ | < 5. By the existence of lim;_,o0 t; = t*,
there is a positive integer kg such that

& [
1 t; — 7 i H ?
(3:15) it <m‘“{1ozv(zv+ D T0(N £ 1) ”}

for all j > ¢ > ko. Choose k1 > ko with the properties: for j > i > ki,
¢ [|S(t; — t:)(0) — ¢(0)|| < e/(5N);
o ||S(t; —t)Pm — Pml]| <e/(1ONT), 1<m<ky—1;
o IS = ti)f(tm, ue,) = f(tmsur, )|l < €/(LONT), 1< m < ko—1

with t,,, € L,;
o |IS(t; —t:)f(t,ue,) — FE u,)|| <e/(1ONT), 1< m < ky—1 with
tm € L.
Then we have
13 €
1 — £)6(0) — <N =%
(3.16) NIS(t; -~ 1)6(0) - 90l < N = &

NS [ 1S - thGs) - hs)lds

< NS f“"“ 1S(t; — t:)h(s) — h(s)||ds
(3.17) m=0
+ z SIS (5 — ta)h(s) — h(s)|lds)

m:o

N(te, — to) oar + N(ti — th)(N + 1)M
€.
57

INIA
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tj

€ €
3.18 N < N—=—;
(3.18) 5 mg(s)ds < EN = B

i—1
N Z_O(tm-‘rl - tm)“S(tj — ti)Pm _pm”

ko—1
< N E (t7n+1 - tm)”S(tj - ti)pm _pm”
(3.19) m=0
+N Zk (tmt1 — tm)HS(tj —t:)Pm — Pml|
m=ko
< N(tko — tO)TOIEV_T + (ti - tkO)N(N + 1)
< £
= 57
£
(320) N(tj — ti) < g
From (3.14) to (3.20), we obtain that
(3.21) llz; — @il <e

for all j > ¢ > ki, i.e., {z;} is a Cauchy sequence. Therefore lim; ., z; = z*
exists, and z* € B(¢(0),r) N D since B(¢(0),r) N D is closed. We define
u(t*) = z*. By (iv) we have

lu(t) = 2ill S NSt = to)as — il + (t: — (M +1)

and therefore limyqs» u(t) = 2* = u(t*). Accordingly, u is continuous on [t —
g,t*], and hence lim; o uy, = us« € C([—q,0]; X) N B(¢,7).

We assert that ¢* ¢ L,, for sufficiently large n. Indeed, if ¢t* € L,,, then there
are only finite many t; & L, since [to,t*] \ Ly, is closed. Therefore there is a
positive integer ¢ such that ¢; € L,, for all i > ig. But then [t;,,t*] C L, by
(3.5), which contradicts the fact that A(L,) < % for sufficiently large n.

We now assume by contradiction that t* < to + 7. We choose h* € (0, 1]
such that

Y B
(3.22) d(S(h*)z* + / S+ h* —8)f{t*,up)ds; D) < .
”
Since %c& < d; and d; = t;r1 — t; > 0 as i — oo, there is a positive integer ig
such that 6; < h* for all i > iy. On the basis of (3.9), we have

*

ti+h*
(3.23) d(S(h*)x* +/ S(t; + h* — ) f(t",u)ds; D) > ;L—n
.

i

for i > ip and t; ¢ L,. Letting i — oo in (3.23), one obtains an inequality
which contradicts (3.22). Hence t* = g + T, which concludes the proof. O

Proof of sufficiency. Let {L,} be a sequence of open subsets of R such that
Z C Ly and X(L,) < L for all n € N. Take L = Np>1L, and a sequence of
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n-approximate solutions {u™} and {t?} obtained in Lemma 3.2. Let us define
i—1
9n(t) = Y (tryy — th)S(E = th, )P, + (t — )P}
m=0
for t € [ti,tir1]. Then ||lgn(t)|| < &L for all t € [to,to + T and u™ can be

written in the form
t

(3.24) u™(t) = S(t — to)p(0) + [ S(t — $)hn(s)ds + gn(t)

to
for all ¢ € [to, to + T],uy = ¢. Set
t
yn(t) = S(t - s)hﬂ(s)ds, te [t07t0 + T]

to
Since the semigroup S(t) : X — X,t < 0, is compact and {h,} is uniformly
integrable on [to,to + T, by a standard argument involving a compactness
result, it follows that there is a y € C([to, %o + T; X) such that at least on a
subsequence we have

Jim y"(2) = y(0)
uniformly in ¢ € [to, o+ T]. Since ||gn(t)|| < XL for all t € [to, o+ T, it follows
that
(3.25) lim u™(t) = S(t — t0)9(0) + y(t) = u(t)

n—o0

uniformly in ¢ € [to,to + T]. Let us observe that if s ¢ L, then s ¢ L, for
sufficiently large n, and then we have a,(s) — s as n — oco. Also we have
Bn(s) = s asn — oo for all s € [tg,to + T]. Therefore h,(s) — f(s,us) as
n — oo for a.e. s € [to,to + T]. Moreover, u™(an(s)) € D N B(¢(0),r) implies
u(s) € DN B(¢(0),r)(which is closed). Finally, passing to limit in (3.24), one
obtains (1.3), which completes the proof. O

Concerning the continuation of the solution to (1.1) satisfying (1.2). Recall
that a solution v : [to,tq + T1] — X of (1.1), with 77 > T is said to be
a continuation to the right of the solution w : [to,to + T] — X to (1.1), if
v(t) = u(t) for all ¢ € [to,to + T]. A solution u is said to be noncontinuable
if it has no proper continuation. Using a standard argument based on Zorn’s
Lemma, one can easily verify that, if the hypotheses of Theorem 3.1 hold, and
u : [tg,bp) = X is a noncontinuable mild solution to (1.1) satisfying (1.2), then
either by = b or limyps, ||u(t)|] = +00. Moreover, the tangency condition (T) is
also necessary. Precisely, we have

Theorem 3.3. Under the hypotheses of Theorem 3.1, a necessary and suffi-
cient condition in order that for each to € (a,b), and each ¢ € C([—q,0]; X)
with $(0) € D, there is a noncontinuable mild solution u(t) € D to (1.1) satis-
fying (1.2) is the tangency condition (T).
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Remark 3.4. If, in addition to the hypotheses of Theorem 3.1, we suppose that
#(8) € D for all § € [—q,0], then there exists a solution to (1.1) and (1.2) with
u(t) € D for all ¢ € [tg — q,t0 + T].

Remark 3.5. If D is open, then the tangency condition (T) is automatically
satisfied. In this case, by Theorem 3.1, one obtains the locally existence result
of problem (1.1) and (1.2), which extends the well-known result of J. K. Hale
[8], who considered the case in which X is finite dimensional (i.e., X = R™)
and A =0.

Theorem 3.6. Let X be a real Banach space X, f : (a,b) x C([—q,0]; X) = X
a function satisfying (A1)-(A3), and let A be the infinitesimal generator of
a compact Co-semigroup S(t) : t > 0. Then for each ty € (a,b), and each
¢ € C([—q,0}; X) with $(0) € D, the problem (1.1) and (1.2) has a locally mild
solution, for some T = T(ty,¢) > 0, with T < b — tg.
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