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BOUNDEDNESS AND CONTINUITY OF SOLUTIONS FOR
STOCHASTIC DIFFERENTIAL INCLUSIONS ON INFINITE
DIMENSIONAL SPACE

YONG Sik YUN AND SANG Uk Ryvu

ABSTRACT. For the stochastic differential inclusion on infinite dimen-
sional space of the form dX; € o(X.)dW, + b(X})dt, where o,b are set-
valued maps, W is an infinite dimensional Hilbert space valued Q-Wiener
process, we prove the boundedness and continuity of solutions under the
assumption that ¢ and b are closed convex set-valued satisfying the Lip-
schitz property using approximation.

1. Introduction

Let H and U be two separable Hilbert spaces and denote by L = L(U, H)
the set of all linear bounded operators from U into H. The set L is a linear
space and, equipped with the operator norm, becomes a Banach space. How-
ever if both spaces are infinite dimensional, then L is not a separable space. Let
@ be a symmetric nonnegative operator in L(U) = L(U,U) and W (t),t > 0,
be a U-valued Q-Wiener process. Let Uy = Q'/2U and LY = Ly(Up, H). Let
(€2,3, P) be a complete probability space with a right-continuous increasing
family (§:)¢>0 of sub o-fields of § each containing all P-null sets. We con-
sider the following stochastic differential inclusion (1.1) on infinite dimensional
Hilbert space H.

(11) dXt S O'(Xt)th + b(Xt)dt,

where ¢ : H — P(L), b: H — P(H) are set-valued maps. For finite di-
mensional case, the study of the existence and properties of solution for these
stochastic differential inclusions have been developed by many authors ([1],
(2], [3], [4]). Furthermore the results for the viable solutions have been made
(12}, 5], [6]). Yun and Shigekawa ([8]) proved the existence of solution for
the stochastic differential inclusion (1.1) on finite dimensional space under the
condition that o and b satisfy the Lipschitz condition.

In this paper, we prove the boundedness and continuity of solutions for (1.1).
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2. Preliminaries

We prepare the definition of solution for stochastic differential inclusion and
some results for the stochastic differential equation on infinite dimensional
Hilbert space. We consider two Hilbert spaces H and U, and a symmetric
nonnegative operator ) € L(U). We consider first the case when Tr @ < +oc.
Then there exists a complete orthonormal system {ex} in U, and a bounded
sequence of nonnegative real numbers Ay such that Qe = Arer, k=1,2,....

Definition 2.1. An U-valued stochastic process W(t),t > 0, is called a Q-
Wiener process if

(i) W(0) =0,

(i) W has continuous trajectories,

(iii) W has independent increments,

(iv) W(t) - W(s) ~N(0,(t - 5)Q), t > s > 0.

If a process W(t),t € [0,T] satisfies (i) - (iii) and (iv) for ¢,5 € [0,77,
then we say that W is a Q-Wiener process on [0,7]. Using the Kolmogorov
extension theorem, for arbitrary trace class symmetric nonnegative operator @
on a separable Hilbert space U there exists a Q-Wiener process W (¢),t > 0 ([4,
Proposition 4.2]).

For an L = L(U, H)-valued elementary process ® one defines the stochastic
integral by the formula

t k—1
/ B(5)dW () = 3 @ (Winryint — Wennt)
0 m=0
and denote it by ® - W (¢),t € [0, 7).
It is useful, at this moment, to introduce the subspace Uy = Q'/2(U) of U
which, endowed with the inner product

(u,v)0 = 2 )\—lk-(u,ekﬂv,ek) = (Q ' ?u, Q" /?),

k=1

is a Hilbert space.

In the construction of the stochastic integral for more general processes an
important role will be played by the space of all Hilbert-Schmidt operators
LY = Ly(Uy, H) from Uy into H. The space LY is also a separable Hilbert
space, equipped with the norm

> KT, f)P = Y AT, fi)l?

h,k=1 h,k=1

= [|ZQY2||? = Tr [¥QT7],

where {g;}, with g; = \/Aje;,j = 1,2,...,{e;} and {f;} are complete or-
thonormal bases in Uy, U and H respectively. Clearly, L C LY, but not all

1|13



BOUNDEDNESS AND CONTINUITY 809

operators from L can be regarded as restrictions of operators from L. The
space LY contains genuinely unbounded operators on U ([4]).
Let ®(t),t € [0, T], be a measurable L3-valued process; we define the norms

ol ={E [ 18(s)lzgds}?

- I (@(s)QV/2)(@(5)QM) s} 2, te [0,T).

Definition 2.2 ([4, Proposition 4.5]). If a process ® is elementary and |||®|]|;<
oo then the process ®-W is a continuous, square integrable H-valued martingale
on [0,7] and

El2- W@ =|®fl]f, 0<t<T.

Let us consider a stochastic differential inclusion on infinite dimensional
space

(1.1) dX, € o(X)dW, + b(X,)dt,

with initial value Xy = z, where o : H — P(LY), b: H — P(H) are set-valued
maps and z is an H-valued §p-measurable random variable.

Definition 2.3. A stochastic process X = {X;, t € [0,T]} is said to be
a solution of (1.1) on [0,7] with the initial condition Xy, = =z if there are
predictable random processes £ : Q x [0,T] — L3, n: Q2 x [0,T] = H such that
£(t) € o(Xy), n(t) € b(X;) for every t € [0,T] almost surely and

¢ t
Xi=z+ / £(s) AW, + / n(s) ds.
0 0

3. Main result

For a Banach space X with the norm || - || and for non-empty sets A, A’
in X, we denote ||A|| = sup{||a|| | a € A}, d(a,4") = inf{d(a,d') | a' € A"},
d(A,A") = sup{d(a,A’) | a € A} and dy(A, A’") = max{d(4,A"),d(4’, A)},
a Hausdorff metric. We can prove the existence of solution for the stochas-
tic differential inclusion (1.1) under Lipschitz condition using approximation.
From now we assume that the coefficients ¢ and b in (1.1) are closed convex
set-valued functions which are Lipschitz continuous, i.e., there exists constants
L > 0 and K > 0 such that

{ du(o(z),0(y)) < Llz —y|, da(b(x),b(y)) < Llz —y|
llo@)|] < K1+ |z|), [|bx)]] < K1+ |z]).

Theorem 3.1. There exists a solution Xy, t € [0,T], for the stochastic differ-
ential inclusion (1.1).



810 YONG SIK YUN AND SANG UK RYU

Proof. For arbitrary & and n?, define (X*), (€7'), and (n}*) as the following by
induction.

t t
X = x+/ £3dW +/ 1o ds,
0 0
1= Poixp &8, i = Py

where P4z is the nearest point of A from z for closed convex set A. We claim
that (X7*) converges and the limit becomes a solution. Since

e+ — €7l12g < dir(o(XP), 0(X7~)
L’ / (€ e+ [ o - s

?

we have

) 1/p
E[sup e+ ~£§‘IIILgII”J
0<s<t

Y p] /P
/ (€ — e 1aw, ] +LE[ sup ’/ g dv} ]
0 0<s<t

<LGE [ / lex = €274 13yds ) ] +LE[ / nt - n:-1|ds)p]1/p

(by Burkholder’s inequality)
t
/ [y — 0}t |ds
0

t 1/2
[ e - et igasl| 4 x
0 /2
t 1/2 t
<1 [ e - & Rglhads) " +L [ 1z =zl

t 1/2 t
=Lol{/0 ||||§z—§:-1||Lgnids} +L/O Iz = 2 ds.

< LE[ sup
0<s<t

< LGy

p

By the same way,

1/p
E[sup Ipgtt — n?l”]
0<s<t

1/2 ¢
SLcl{/O ||||«s:—s:~lrug||§ds} +L/0 2 — 52 ds.

Taking M > 0 be such that

2LC, 2L Mt Mt
< < 2Lt <
2M+1+M+1_1, 2LC1Vt < eMt and 2Lt < eM?t,




BOUNDEDNESS AND CONTINUITY 811

we have

‘ sup [IEr — €7 g
3 1) 0<s<t p
@ eMt 1 0 1 0

< ] s it = gl + sup 1k =2l .
0<s<t 0<s<t

s, i =i

(3.2) Ses r

eMt 1 0 1 0
< { sup [111€8 = Ellzglp + sup i —nsllp}-
2" |o<s<t 0<s<t

In fact, in case of n = 1,

sup [|€7 — &1
0<s<t p

< Lcl\/t sup [|I[€} — &1|zglI2 + Lt sup |Int —nlll,
0<s<t 0<s<t

< et 1_ 40 1_,0
= 2 Sup ||||£s €s||Lg'|P+ Sup Hns 775”19 .
0<s<t 0<s<t

We can prove similarly for . Assume that the above inequalities hold for n—1.
Then

sup [1€77 — €7l
0<s<t p

t eMs 2 1/2 £ eMs
<L t)? Ll —d
< cl{/o (57 ¢()ds} + /Osn_l s

1/2
= LCl¢(t)2n_l_1{ 1 (e2Mt — 1)} n L 1 (€M — 1)o(t)

2M +1
Mt

€
S —2'n_¢(t)7

where ¢(f) = subo< o<, [lI1€2 — €2111g]ls + SuPp< <y I} — nClly- For m, we can

prove similarly. Thus the above inequalities (3.1) and (3.2) hold for every
n=12....

Since

o0 o0

Yol sup et = €2llug|| < oo and || sup [grtt —n?||| < oo,
n=0!l0<s<t p n—p!l0<s< p

(6) and (ny*) converge in LP. Denoting the limits by & and 7, respectively,

lim
n-—ro0

= 0.

p

=0 and Ilim
n—+00
P

sup (165" — &llzg

sup |7 — s
0<s<t

0<s<t
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If we put

t t
Xi=x+/£des+/nsds,
0 0

then we have

sup | X7 - X|
0<s<t

t 1/2 ¢
<o [ Mg -l asf -+ [z =l ds
P 0 0

Letting n — oo, the right hand side tends to 0. Thus (X7) converges to X, in
LP. Furthermore, we have

d(€s, 0(Xs)) < [I&s — &7 Ml2g + d(&5, 0(Xs))
<€ = €Xllog + LIXP™H = X,

and thus
sup d(E,,o(X,)|| < || sup lIEs — €0llug|| +I|| sup X271 - X,|| -
0<s<t » 0<s<t p 0<s<t »

Since the right hand side converges to 0, s € o(X,), a.e. Similarly, we can
prove that 5, € b(X,), a.e. Hence X, is a solution. ]

Furthermore, we have the following theorem for boundedness of solutions.
The proof is similar to that in case of finite dimensional space.

Theorem 3.2. Let X; be any solution of (1.1). Then X, is bounded, i.e., for
P22,

E[ sup |X,|P] < 0.
0<s<t

Proof. Let X; be a solution. Then there exist &, € o(X,) and 55 € b(X,) such
that

t t
Xi=x+ / £ dW, + / 1sds.
0 0

Since

E[ sup |X,|P]
0<s<t

£ i
S 3P—1|x[1’ + 3P’1CIE [ {/ |§3|2ds}p/2 ]+3P_IE [ {/ |775|2d3}p :l
0 ]
t t
< 3P lglP + 3771, T / E[|¢&,|P)ds + 37T / Ellns|")ds
0 0
t
< P + 3071 T / K*(1+ E[|X.["))2P~ ds
0

t
+3p-tret / KP(1 + E[|X,|P])2Pds,
0
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if we put ¢(t) = E[supgc,< | X, ],
t
P(t) < 37U z|P + 6P KPTEC, + 6P KPT 2Oy / ¥(s)ds
0

+ 6P KPTP 4 6P gPTPL /0 t (s)ds
=3Pz + 6P LKPTE(Cy 4 1)
+ 6P LKP(TH 2 Oy + TP /Ot P(s)ds.
By Gronwall’s inequality,
$(t) < (3P 7Yx|P + 67" KPTE(Cy + 1)) - exp(6°  KP (T Cy + TP~ 1)t).
Hence X; is bounded. O
Let
S(x) = {X;|X; is a solution of (1.1) with initial point Xo = z}.
Theorem 3.3. S(x) is closed.
Proof. Let (X[*) be a sequence in S(z) converging to Xq, i.e.,

lim E[ sup X' — X[} =0.
n—+oo OStST

Since (X{*) are solutions of (1.1), there sequences (&) and (n*) such that
¢ t
X! = x+/ &AW, +/ nyds.
0 0

For closed convex set A C R?, define P4(z) € R? by |lz — Pa(2)|| = d(z, 4).
Then P4(z) exists uniquely. Put £ = P,(x,)(£0") and 77 = Pyx,)(n}*). Then
by hypothesis,

€ — &1 < dr(o(X),0(X]) < LIX, - X7,

0 — ¢l < da(b(Xe),b(X7)) < LIX, - X7
Since

T T T
E{/O |£flpdt]SE[/0 lo(X,)Pdf] < B2k / (1 + [ X,[P)dt],

(€7) and (7f) are LP-bounded. Taking suitable subsequence of (£7) and convex
combinations of subsequence, we can estimate the limit &; by the following way

(7).
T Nn . 1
B[ 1é - DN < g
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Similarly, for (7;),

/ |7 — Zx\mtl”dt]<—

Since

t t
|Xt—x—/ ESdWs—/ fisds|
0 0
N, ) N, ) t ‘ t '
:|Xt—ZAJ-Xz+Z,\sz—x—ZAj/ §§dWs—Z)\j/ nids
= N 3 0 [ 0]
+Z/\/ (& — E)aw, +Z)\ / () —71)ds
+ [(ENg - &paw, + / (5 A5 = )|
J J
. t . A
< Sax-xi+ N [ @ -8
J J
t . . t .
e300 [l s+ [ 130Nl s,
j 0

we have

t t
I sup 1% =2~ [ éaw, ~ [ sl I,
0<t<T 0 0
t
< SN sup [Xe=XE 1, + S Al su / I — E)dw,
< Sul s, 1= XE + Al s, | (6= a1y
t . . T . )
+1| su A8 — &) dWs| |, + )\'/ J —qllds
I, 22, 1 (8 = 0wl S 1 = kst
T .
[ 130 A = sl
7
. T . A
< Sl sup 1X— X o+ G S NEL [ 1€ - sy
7 0<t<T ; 0
T A~ A T . .
+CEL [ |0 - &Pdsy P+ SABU [ i - s}
0 ; ; 0

T
+ B[ / S A — |} P
7



BOUNDEDNESS AND CONTINUITY 815
. (1 1) T N A .
< Al sup | Xy — XF| (|, + CiT 2% )\-E/ T —¢&lPds
< XJ: gllogthl t = Xi| |l +C1 Z,: i [0 165 — & 1Pds]
1 1 T A~ A~ 1 T . .
+OTEDE[ |G - pas + 707 Y B /0 Inf — #gpPds]
0 J

T
+T0-H g / S A — fufPds]
7

Letting n — o0, the right hand side tends to 0. We can Z 1A ft & aedt,

a.e.w for some subsequence. And since o(X,) is convex, & € cr(Xt) a.e.t, a.e.w.
By the same way, 7j; € b(X;) a.e.t, a.e.w. This proves that (X,) is a solution of
(1.1). Thus SP(z) is closed. g

Theorem 3.4. The mapping x — S(z) is Lipschitz continuous.

Proof. Let X; € S(x). Then there exist & € o(X,) and n, € b(X,) such that
¢ t
Xi=x+ EdW +/ nsds.
0 0

Let & = & and n = n,, and define (Y;*), (¢7), and (n7) as the following by

induction.
t t
Y7 =yt / Erdw, + / s,

T = Pyl ettt = = Pyymyni's

where P42 is the nearest point of A from z for closed convex set A. Then by
the proof of Theorem 3.1, (Y;™) converges to a solution ¥; € S(y).

Put ¢(t) = SUPp<s<t €3 - &llp + SUDg<s<t |lng = n2]lp- Since

Mt
n n e n
| sup |7+ — €| I, < =—¢(t) and || S lﬂ o2l < 5 ¢()
0<s<t 2 2

we have
I sup [V X7 [ < G / e+t — en|2ds)h + / |72 = 2|

t 2Ms t eMs
< 01{/ £)2ds} +/ o 0(0)ds
0

e
< om 2M+1¢>(t)+ 5y )
_OiM +2M +1eM )
T M(@2M+1) 2¢ ’

Cl Mt Mt
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Thus
o0
| sup Ve = Xu| llp < DIl sup [¥7F' =¥ |lp +1| sup [V~ Xef Il
0<t<T =5 0<t<T 0<t<T

(Cir+2)M +1

L - 7

= TM@EM+ 1) |

By &} —&)| < du(0(Xy),0(Y)) < L|X,~Y?| = L|z—y| and |n; —n¢| < Liz—yl,
¢(t) < 2L|x — y|. Thus

2eMT (1) + |z - yl.

L((Cy +2)M + 1)

4
| sup [Yi — Xy [, <{ eMT 1+ 1}z —yl.
0<t<T

M@2M +1)
Therefore dg(SP(z),SP(y)) < C|z — y|. Hence the mapping z — SP(zx) is
Lipschitz continuous. O
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