HYERS-ULAM-RASSIAS STABILITY OF A SYSTEM OF FIRST ORDER LINEAR RECURRENCES

MINGYONG XU

ABSTRACT. In this paper we discuss the Hyers-Ulam-Rassias stability of a system of first order linear recurrences with variable coefficients in Banach spaces. The concept of the Hyers-Ulam-Rassias stability originated from Th. M. Rassias' stability theorem that appeared in his paper: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300. As an application, the Hyers-Ulam-Rassias stability of a *p*-order linear recurrence with variable coefficients is proved.

1. Introduction

Hyers-Ulam stability is a basic sense of stability for functional equations. In 1940, S. M. Ulam proposed the following problem:

Given a group G, a metric group $(G^{'},\cdot,\varrho)$ and a positive number ε , does there exist a constant $\delta>0$ depending on ε such that, if $f:G\to G^{'}$ satisfies the inequality $\varrho(f(xy),f(x)f(y))\leq \delta$ for all $x,y\in G$, then there exists a homomorphism $\varphi:G\to G^{'}$ such that $\varrho(f(x),\varphi(x))\leq \varepsilon$ for all $x\in G$?

In case of a positive answer to the previous problem, we usually say that the Cauchy functional equation $\varphi(xy) = \varphi(x)\varphi(y)$ is stable. In 1941, D. H. Hyers [5] first proved that the Cauchy equation f(x+y) = f(x) + f(y) is stable in Banach spaces. Later, the Hyers-Ulam stability was studied extensively and also, the notion of the original Ulam problem was generalized (see, e.g., [4, 6, 11, 12, 14]). Most of the papers discussed the stability of the continuous functions in several variables. In 2005, the discrete case for equations in single variable was investigated by D. Popa [9, 10], concretely to say, first the Hyers-Ulam-Rassias stability of the first order linear recurrence

$$(1.1) x_{n+1} = a_n x_n + b_n,$$

was studied in [9], then the obtained results have been generalized to a p-order linear recurrence with constant coefficients [10]

$$(1.2) x_{n+p} = a_1 x_{n+p-1} + \dots + a_p x_n + b_n.$$

Received April 17, 2007.

²⁰⁰⁰ Mathematics Subject Classification. 39B82.

Key words and phrases. Hyers-Ulam-Rassias stability, linear recurrence, sequence, product space.

In this paper we discuss the Hyers-Ulam-Rassias stability of a system of first order linear recurrences with variable coefficients

1.3)
$$\begin{cases} x_1(n+1) = a_{11}(n)x_1(n) + a_{12}(n)x_2(n) + \dots + a_{1p}(n)x_p(n) + b_1(n), \\ x_2(n+1) = a_{21}(n)x_1(n) + a_{22}(n)x_2(n) + \dots + a_{2p}(n)x_p(n) + b_2(n), \\ \vdots \\ x_p(n+1) = a_{p1}(n)x_1(n) + a_{p2}(n)x_2(n) + \dots + a_{pp}(n)x_p(n) + b_p(n). \end{cases}$$

As an application, the Hyers-Ulam-Rassias stability of a p-order linear recurrence with variable coefficients

$$(1.4) x_{n+p} = a_{p-1}(n)x_{n+p-1} + \dots + a_0(n)x_n + b_n,$$

is proved.

2. Stability of the system (1.3)

In what follows we denote by K the field C of complex numbers or the field R of real numbers, N the positive integers, N_0 the nonnegative integers and $K^{p\times p}$ the vector space consisting of all $p\times p$ matrices. Let $(E,\|\cdot\|)$ be a Banach space over K, Ω is a product space of E, $X=(x_1,x_2,\ldots,x_p)^T\in\Omega$ (T denotes transposition), where $x_i\in E(i=1,2,\ldots,p)$. On Ω , we get the norm as $\|X\|_{\infty}=\max_{1\leq i\leq p}\|x_i\|$, then it can be easily checked that $(\Omega,\|\cdot\|_{\infty})$ is also a Banach space over K.

Matrix $A = (a_{ij})_{p \times p} \in K^{p \times p}$ acting on $X \in \Omega$ can be regarded as a linear operator $A : \Omega \to \Omega$, then one can verify that $\|A\|_{\infty} = \max_{1 \leq i \leq p} \sum_{j=1}^{p} |a_{ij}|$ being subject to the vector norm $\|\cdot\|_{\infty}$. For any $X \in \Omega$, $A \in K^{p \times p}$, $B \in K^{p \times p}$, we have $\|AX\|_{\infty} \leq \|A\|_{\infty} \|X\|_{\infty}$, $\|AB\|_{\infty} \leq \|A\|_{\infty} \|B\|_{\infty}$.

For each $n \in N_0$, define

$$X_{n} := \begin{pmatrix} x_{1}(n) \\ x_{2}(n) \\ \vdots \\ x_{p}(n) \end{pmatrix}, \quad A_{n} := \begin{pmatrix} a_{11}(n) & a_{12}(n) & \cdots & a_{1p}(n) \\ a_{21}(n) & a_{22}(n) & \cdots & a_{2p}(n) \\ \vdots & \vdots & \ddots & \vdots \\ a_{p1}(n) & a_{p2}(n) & \cdots & a_{pp}(n) \end{pmatrix},$$

$$B_{n} := \begin{pmatrix} b_{1}(n) \\ b_{2}(n) \\ \vdots \\ b_{p}(n) \end{pmatrix}.$$

Then the system (1.3) can be rewritten as

$$(2.5) X_{n+1} = A_n X_n + B_n, \quad n \in N_0.$$

Lemma 1. If the sequence $(X_n)_{n\in\mathbb{N}_0}$ satisfies the relation (2.5), then

$$(2.6) X_n = A_{n-1}A_{n-2}\cdots A_0X_0 + \sum_{k=1}^{n-1} A_{n-1}A_{n-2}\cdots A_kB_{k-1} + B_{n-1}, \ n \ge 2.$$

Proof. It can be easily proved by induction. For n=2 the relation (2.6) becomes

$$X_2 = A_1 A_0 X_0 + A_1 B_0 + B_1,$$

which is true according to the relation (2.5). Suppose that (2.6) is true for a fixed $n \ge 2$, we have to prove that

$$(2.7) X_{n+1} = A_n A_{n-1} \cdots A_0 X_0 + \sum_{k=1}^n A_n A_{n-1} \cdots A_k B_{k-1} + B_n.$$

In virtue of the relation (2.5) and (2.6), it follows that

$$X_{n+1}$$

$$= A_n \left(A_{n-1} A_{n-2} \cdots A_0 X_0 + \sum_{k=1}^{n-1} A_{n-1} A_{n-2} \cdots A_k B_{k-1} + B_{n-1} \right) + B_n$$

$$= A_n A_{n-1} \cdots A_0 X_0 + \sum_{k=1}^n A_n A_{n-1} \cdots A_k B_{k-1} + B_n.$$

Hence, the relation (2.7) is true for every $n \geq 2$.

Theorem 1. Let $A_n \in K^{p \times p}$ be a nonzero matrix for every $n \in N_0$, $(\varepsilon_n)_{n \in N_0}$ be a sequence of positive numbers with the property $\liminf_{\varepsilon_{n-1} ||A_n||_{\infty}} > 1$. If the sequence $(Y_n)_{n \in N_0}$ in Ω satisfies the inequality

$$(2.8) ||Y_{n+1} - A_n Y_n - B_n||_{\infty} \le \varepsilon_n, \quad n \in N_0,$$

then there exists a sequence $(X_n)_{n\in\mathbb{N}_0}$ in Ω given by (2.5) and a positive constant L_0 such that

$$(2.9) $||X_n - Y_n||_{\infty} < L_0 \varepsilon_{n-1}, \quad n \in \mathbb{N}.$$$

Proof. If the sequence $(Y_n)_{n\in N_0}$ in Ω satisfies the inequality (2.8), then we can denote that

$$(2.10) Y_{n+1} = A_n Y_n + B_n + C_n, \quad n \in N_0,$$

where $C_n = (c_1(n), c_2(n), \dots, c_p(n))^T \in \Omega$, $||C_n||_{\infty} \leq \varepsilon_n$ for every $n \in N_0$. From Lemma 1, the general solution of (2.10) can be obtained as (2.11)

$$Y_n = A_{n-1} \cdots A_0 Y_0 + \sum_{k=1}^{n-1} A_{n-1} A_{n-2} \cdots A_k (B_{k-1} + C_{k-1}) + (B_{n-1} + C_{n-1}).$$

Define the sequence $(X_n)_{n\in\mathbb{N}_0}$ in Ω given by (2.5) with $X_0:=Y_0$, then

$$(2.12) ||X_{n} - Y_{n}||_{\infty}$$

$$= ||A_{n-1} \cdots A_{0}X_{0} + \sum_{k=1}^{n-1} A_{n-1} \cdots A_{k}B_{k-1} + B_{n-1} - A_{n-1} \cdots A_{0}Y_{0}$$

$$- \sum_{k=1}^{n-1} A_{n-1}A_{n-2} \cdots A_{k}(B_{k-1} + C_{k-1}) - (B_{n-1} + C_{n-1})||_{\infty}$$

$$= ||\sum_{k=1}^{n-1} A_{n-1}A_{n-2} \cdots A_{k}C_{k-1} + C_{n-1}||_{\infty}$$

$$\leq \sum_{k=1}^{n-1} ||A_{n-1}A_{n-2} \cdots A_{k}||_{\infty} \varepsilon_{k-1} + \varepsilon_{n-1}.$$

Taking account of the condition $\liminf \frac{\varepsilon_n}{\varepsilon_{n-1}||A_n||_{\infty}} > 1$, there exists a constant q_0 and $n_0 \in N$ such that

(2.13)
$$\frac{\varepsilon_n}{\varepsilon_{n-1}||A_n||_{\infty}} \ge q_0 > 1 \quad \text{for all } n \ge n_0,$$

which implies that

$$\frac{\varepsilon_{n-1}}{\varepsilon_{k-1}||A_{n-1}A_{n-2}\cdots A_k||_{\infty}} \geq \frac{\varepsilon_{n-1}}{\varepsilon_{n-2}||A_{n-1}||_{\infty}} \frac{\varepsilon_{n-2}}{\varepsilon_{n-3}||A_{n-2}||_{\infty}} \cdots \frac{\varepsilon_k}{\varepsilon_{k-1}||A_k||_{\infty}}$$

$$(2.14) \qquad \geq q_0^{n-k}, \quad n > k \geq n_0.$$

Hence for every $n > n_0$, we have

$$\sum_{k=1}^{n-1} \|A_{n-1}A_{n-2} \cdots A_{k}\|_{\infty} \varepsilon_{k-1} + \varepsilon_{n-1}$$

$$= \sum_{k=1}^{n_{0}-1} \|A_{n-1} \cdots A_{k}\|_{\infty} \varepsilon_{k-1} + \sum_{k=n_{0}}^{n-1} \|A_{n-1} \cdots A_{k}\|_{\infty} \varepsilon_{k-1} + \varepsilon_{n-1}$$

$$\leq \|A_{n-1}A_{n-2} \cdots A_{n_{0}}\|_{\infty} \sum_{k=1}^{n_{0}-1} \|A_{n_{0}-1}A_{n_{0}-2} \cdots A_{k}\|_{\infty} \varepsilon_{k-1}$$

$$+ \sum_{k=n_{0}}^{n-1} \|A_{n-1}A_{n-2} \cdots A_{k}\|_{\infty} \varepsilon_{k-1} + \varepsilon_{n-1}$$

$$\leq \frac{\varepsilon_{n-1}}{\varepsilon_{n_{0}-1} q_{0}^{n-n_{0}}} \sum_{k=1}^{n_{0}-1} \|A_{n_{0}-1}A_{n_{0}-2} \cdots A_{k}\|_{\infty} \varepsilon_{k-1} + \sum_{k=n_{0}}^{n-1} \frac{\varepsilon_{n-1}}{q_{0}^{n-k}} + \varepsilon_{n-1}$$

$$\leq (\frac{1}{\varepsilon_{n_{0}-1}} \sum_{k=1}^{n_{0}-1} \|A_{n_{0}-1}A_{n_{0}-2} \cdots A_{k}\|_{\infty} \varepsilon_{k-1} + \frac{1}{q_{0}-1} + 1)\varepsilon_{n-1}.$$

In view of (2.12), it is enough to take

$$L_0 \ge \frac{1}{\varepsilon_{n_0-1}} \sum_{k=1}^{n_0-1} ||A_{n_0-1} A_{n_0-2} \cdots A_k||_{\infty} \varepsilon_{k-1} + \frac{1}{q_0-1} + 1,$$

and such that $||X_n - Y_n||_{\infty} \le L_0 \varepsilon_{n-1}$ for $1 \le n \le n_0$.

Theorem 2. Let $A_n \in K^{p \times p}$ be an invertible matrix for every $n \in N_0$, $(\varepsilon_n)_{n \in N_0}$ be a sequence of positive numbers with the property

$$\limsup \frac{\varepsilon_n}{\varepsilon_{n-1}} ||A_n^{-1}||_{\infty} < 1.$$

If the sequence $(Y_n)_{n\in N_0}$ in Ω satisfies the inequality

$$(2.15) ||Y_{n+1} - A_n Y_n - B_n||_{\infty} \le \varepsilon_n, \quad n \in \mathbb{N}_0,$$

then there exists a sequence $(X_n)_{n\in\mathbb{N}_0}$ in Ω given by (2.5) and a positive constant L_1 such that

$$(2.16) ||X_n - Y_n||_{\infty} < L_1 \varepsilon_{n-1}, \quad n \in \mathbb{N}.$$

Proof. If the sequence $(Y_n)_{n\in N_0}$ in Ω satisfies the inequality (2.15), then we can also denote that $(Y_n)_{n\in N_0}$ satisfies the relation (2.10). Then we discuss the convergence of the series $\sum_{n=0}^{+\infty} A_0^{-1} A_1^{-1} \cdots A_{n-1}^{-1} C_{n-1}$. The series

$$\sum_{n=1}^{+\infty} \|A_0^{-1} A_1^{-1} \cdots A_{n-1}^{-1}\|_{\infty} \varepsilon_{n-1}$$

is convergent in virtue of D'Alembert test since

$$\limsup \frac{\|A_0^{-1}A_1^{-1} \cdots A_n^{-1}\|_{\infty} \varepsilon_n}{\|A_0^{-1}A_1^{-1} \cdots A_{n-1}^{-1}\|_{\infty} \varepsilon_{n-1}} \le \limsup \frac{\varepsilon_n}{\varepsilon_{n-1}} \|A_n^{-1}\|_{\infty} < 1.$$

So, the series $\sum_{n=1}^{+\infty} A_0^{-1} A_1^{-1} \cdots A_{n-1}^{-1} C_{n-1}$ is also convergent by considering that

$$||A_0^{-1}A_1^{-1}\cdots A_{n-1}^{-1}C_{n-1}||_{\infty} \le ||A_0^{-1}A_1^{-1}\cdots A_{n-1}^{-1}||_{\infty}\varepsilon_{n-1}.$$

Define $S := \sum_{n=1}^{+\infty} A_0^{-1} A_1^{-1} \cdots A_{n-1}^{-1} C_{n-1} \in \Omega$, and $(X_n)_{n \in N_0}$ in Ω given by (2.5) with $X_0 := Y_0 + S$, then

$$(2.17) X_n = A_{n-1}A_{n-2}\cdots A_0(Y_0+S) + \sum_{k=1}^{n-1} A_{n-1}A_{n-2}\cdots A_kB_{k-1} + B_{n-1}.$$

By (2.11) and (2.17), we have

$$(2.18) ||X_{n} - Y_{n}||_{\infty}$$

$$= ||A_{n-1}A_{n-2} \cdots A_{0}S - \sum_{k=1}^{n-1} A_{n-1}A_{n-2} \cdots A_{k}C_{k-1} - C_{n-1}||_{\infty}$$

$$= ||A_{n-1} \cdots A_{0}(\sum_{k=1}^{+\infty} A_{0}^{-1} \cdots A_{k-1}^{-1}C_{k-1} - \sum_{k=1}^{n} A_{0}^{-1} \cdots A_{k-1}^{-1}C_{k-1})||_{\infty}$$

$$= ||A_{n-1}A_{n-2} \cdots A_{0} \sum_{k=n+1}^{+\infty} A_{0}^{-1}A_{1}^{-1} \cdots A_{k-1}^{-1}C_{k-1}||_{\infty}$$

$$= ||\sum_{k=0}^{+\infty} A_{n}^{-1}A_{n+1}^{-1} \cdots A_{n+k}^{-1}C_{n+k}||_{\infty}$$

$$\leq \sum_{k=0}^{+\infty} ||A_{n}^{-1}||_{\infty} ||A_{n+1}^{-1}||_{\infty} \cdots ||A_{n+k}^{-1}||_{\infty} \varepsilon_{n+k}.$$

From the condition $\limsup \frac{\varepsilon_n}{\varepsilon_{n-1}} ||A_n^{-1}||_{\infty} < 1$, there exists $n_1 \in N$ and a constant $q_1 < 1$ for all $n \ge n_1$, we have

$$(2.19) \frac{\varepsilon_n}{\varepsilon_{n-1}} ||A_n^{-1}||_{\infty} \le q_1 < 1,$$

which implies that

$$(2.20) \|A_{n}^{-1}\|_{\infty} \cdots \|A_{n+k}^{-1}\|_{\infty} \varepsilon_{n+k} \leq q_{1} \|A_{n}^{-1}\|_{\infty} \cdots \|A_{n+k-1}^{-1}\|_{\infty} \varepsilon_{n+k-1}$$

$$\leq q_{1}^{2} \|A_{n}^{-1}\|_{\infty} \cdots \|A_{n+k-2}^{-1}\|_{\infty} \varepsilon_{n+k-2}$$

$$\vdots$$

$$\leq q_{1}^{k+1} \varepsilon_{n-1}, \quad k \geq 0.$$

Therefore, by (2.18) and (2.20), we have

$$||X_n - Y_n||_{\infty} \le \varepsilon_{n-1} \sum_{k=0}^{+\infty} q_1^{k+1} = \frac{q_1}{1 - q_1} \varepsilon_{n-1}, \quad n \ge n_1.$$

So it is enough to take $L_1 \ge \frac{q_1}{1-q_1}$ and such that $||X_n - Y_n||_{\infty} \le L_1 \varepsilon_{n-1}$ for all $1 \le n < n_1$.

3. Stability of the recurrence (1.4)

In what follows we give applications of Theorem 1 and 2 to the Hyers-Ulam-Rassias stability of the *p*-order recurrence (1.4).

Corollary 1. Let E be a Banach space over K, $(b_n)_{n\in N_0}$ be a sequence in E, and $(\varepsilon_n)_{n\in N_0}$ be a sequence of positive numbers with the property $\liminf_{\varepsilon_{n-1}f_n} > 1$

where $f_n = \max\{1, |a_0(n)| + \cdots + |a_{p-1}(n)|\}$. If the sequence $(y_n)_{n \in N_0}$ in E satisfies the inequality

$$(3.21) ||y_{n+p} - (a_{p-1}(n)y_{n+p-1} + \dots + a_0(n)y_n + b_n)|| \le \varepsilon_n, \quad n \in \mathbb{N}_0,$$

then there exists a sequence $(x_n)_{n\in\mathbb{N}_0}$ in E given by (1.4) and a positive constant L_2 such that

$$||x_n - y_n|| \le L_2 \varepsilon_{n-1}, \quad n \in \mathbb{N}.$$

Proof. Let $x_1(n) := x_{n+p-1}, x_2(n) := x_{n+p-2}, \dots, x_p(n) := x_n$, then the recurrence (1.4) is equivalent to the system (2.5) with $B_n := (b_n, 0, \dots, 0)^T$ and

$$A_n := \left(\begin{array}{ccccc} a_{p-1}(n) & a_{p-2}(n) & a_{p-3}(n) & \cdots & a_1(n) & a_0(n) \\ 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \end{array}\right).$$

It is easy to see that the property $\liminf \frac{\varepsilon_n}{\varepsilon_{n-1}f_n} > 1$ is equivalent to the condition $\liminf \frac{\varepsilon_n}{\varepsilon_{n-1}\|A_n\|_\infty} > 1$ and the inequality (3.21) is equivalent to the inequality (2.8) with $Y_n := (y_{n+p-1}, y_{n+p-2}, \dots, y_n)^T$. So, according to Theorem 1, there exists a sequence $(X_n)_{n \in N_0}$ given by (2.5) and a positive constant L_2 such that $\|X_n - Y_n\|_\infty \le L_2\varepsilon_{n-1}, n \in N$.

Let $x_n := p_1(X_n)$ for $X_n \in \Omega$ and $n \in N_0$, where $p_1 : \Omega \to E$ is given by: $p_1(z_1, z_2, \ldots, z_p)^T := z_p$. Clearly x_n is a solution of (1.4) and (3.22) holds. \square

Corollary 2. Let E be a Banach space over K, $(b_n)_{n\in N_0}$ be a sequence in E, and $(\varepsilon_n)_{n\in N_0}$ be a sequence of positive numbers with the property $\limsup_{\varepsilon_{n-1}} \frac{\varepsilon_n}{\varepsilon_{n-1}} e_n < 1$ where $e_n = \max\{1, \frac{1+|a_1(n)|+\cdots+|a_{p-1}(n)|}{|a_0(n)|}\}$. If the sequence $(y_n)_{n\in N_0}$ in E satisfies the inequality

$$(3.23) ||y_{n+p} - (a_{p-1}(n)y_{n+p-1} + \dots + a_0(n)y_n + b_n)|| \le \varepsilon_n, \quad n \in \mathbb{N}_0,$$

then there exists a sequence $(x_n)_{n\in N_0}$ in E given by (1.4) and a positive constant L_3 such that

$$||x_n - y_n|| \le L_3 \varepsilon_{n-1}, \quad n \in N.$$

Proof. The recurrence (1.4) is equivalent to the system (2.5) with X_n, B_n, A_n defined as in Corollary 1 and then

$$A_n^{-1} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ \frac{1}{a_0(n)} & \frac{-a_{p-1}(n)}{a_0(n)} & \frac{-a_{p-2}(n)}{a_0(n)} & \cdots & \frac{-a_1(n)}{a_0(n)} \end{pmatrix}.$$

It is easy to see that the property $\limsup \frac{\varepsilon_n}{\varepsilon_{n-1}} e_n < 1$ is equivalent to the condition $\limsup \frac{\varepsilon_n}{\varepsilon_{n-1}} ||A_n^{-1}||_{\infty} < 1$. Thus our result can be obtained by applying Theorem 2.

Example 1. Let $(\varepsilon_n)_{n\in\mathbb{N}_0}$ be a sequence of positive numbers with $\varepsilon_n=\frac{1}{3^n}$ and consider the system

(3.24)
$$\begin{cases} x_1(n+1) = 2nx_1(n) + (2n+1)x_2(n) + b_1(n), \\ x_2(n+1) = (n-1)x_1(n) + (n+1)x_2(n) + b_2(n). \end{cases}$$

Suppose that $Y_n = (y_1(n), y_2(n))^T$ in Ω is an approximate solution of system (3.24) satisfying

$$||Y_{n+1} - A_n Y_n - B_n||_{\infty} \le \varepsilon_n, \quad n \in N_0,$$

where

$$A_n = \begin{pmatrix} 2n & 2n+1 \\ n-1 & n+1 \end{pmatrix}, \quad B_n = \begin{pmatrix} b_1(n) \\ b_2(n) \end{pmatrix}.$$

Then there exists a solution $X_n = (x_1(n), x_2(n))^T$ of (3.24) such that

$$||X_n - Y_n||_{\infty} \le 2\varepsilon_{n-1}, \quad n \in \mathbb{N}.$$

Proof. For all $n \in N$, we have $\frac{\varepsilon_n}{\varepsilon_{n-1}} ||A_n^{-1}||_{\infty} = \frac{1}{3} \frac{3n+2}{3n+1} \le \frac{2}{3} < 1$. By Theorem 2, it follows that $||X_n - Y_n||_{\infty} \le \frac{\frac{2}{3}}{1-\frac{2}{n}} \varepsilon_{n-1} = 2\varepsilon_{n-1}, n \in N$.

Example 2. Let $(\varepsilon_n)_{n\in N_0}$ be a sequence of positive numbers with $\varepsilon_n=\frac{1}{2^n}$ and consider the recurrence

$$(3.25) x_{n+2} = \frac{2n+3}{n+2} x_{n+1} + \frac{2n+1}{n+1} x_n + b_n.$$

Suppose that $(y_n)_{n\in\mathbb{N}_0}$ is a sequence in E satisfying the inequality

$$\left\| y_{n+2} - \frac{2n+3}{n+2} y_{n+1} - \frac{2n+1}{n+1} y_n - b_n \right\| \le \varepsilon_n, \quad n \in \mathbb{N}_0.$$

Then there exists a solution $(x_n)_{n\in\mathbb{N}_0}$ of (3.25) such that

$$||x_n - y_n|| \le 8\varepsilon_{n-1}, \quad n \in N.$$

Proof. For all $n \in N$, we have

$$e_n = \max\left\{1, \frac{1 + \left|\frac{2n+3}{n+2}\right|}{\left|\frac{2n+1}{n+1}\right|}\right\} = \max\left\{1, \frac{(3n+5)(n+1)}{(2n+1)(n+2)}\right\} \le \frac{16}{9}.$$

which implies that $\frac{\varepsilon_n}{\varepsilon_{n-1}}e_n \leq \frac{8}{9} < 1$ for all $n \in N$. By Corollary 2, it follows that $||x_n - y_n||_{\infty} \leq \frac{\frac{8}{9}}{1 - \frac{8}{9}}\varepsilon_{n-1} = 8\varepsilon_{n-1}, n \in N$.

References

- R. P. Agarwal, B. Xu, and W. Zhang, Stability of functional equations in single variable,
 J. Math. Anal. Appl. 288 (2003), no. 2, 852–869.
- [2] G. L. Forty, Hyers-Ulam stability of functional equations in several variables, Aequationes Math. 50 (1995), no. 1-2, 143-190.
- [3] _____, Comments on the core of the direct method for proving Hyers-Ulam stability of functional equations, J. Math. Anal. Appl. 295 (2004), no. 1, 127-133.
- [4] R. Ger, Superstability is not natural, In Report of the twenty-sixth International Symposium on Functional Equations, Aequationes Math. 37 (1989), 68.
- [5] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941), 222-224.
- [6] D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), no. 2-3, 125-153.
- [7] Y. H. Lee and K. W. Jun, A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation, J. Math. Anal. Appl. 238 (1999), no. 1, 305-315.
- [8] K. Nikodem, The stability of the Pexider equation, Ann. Math. Sil. No. 5 (1991), 91-93.
- [9] D. Popa, Hyers-Ulam-Rassias stability of a linear recurrence, J. Math. Anal. Appl. 309 (2005), no. 2, 591-597.
- [10] _____, Hyers-Ulam stability of the linear recurrence with constant coefficients, Adv. Difference Equ. 2005 (2005), no. 2, 101-107.
- [11] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300.
- [12] L. Székelyhidi, The stability of the sine and cosine functional equations, Proc. Amer. Math. Soc. 110 (1990), no. 1, 109-115.
- [13] J. Tabor, On functions behaving like additive functions, Aequationes Math. 35 (1988), no. 2-3, 164-185.
- [14] T. Trif, On the stability of a general gamma-type functional equation, Publ. Math. Debrecen 60 (2002), no. 1-2, 47-61.
- [15] S. M. Ulam, Problems in modern mathematics, Science Editions John Wiley & Sons, Inc., New York, 1964.

DEPARTMENT OF MATHEMATICS SICHUAN UNIVERSITY CHENGDU, SICHUAN 610064, P. R. CHINA E-mail address: xmy19810163.com