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HYERS-ULAM-RASSIAS STABILITY OF A SYSTEM OF
FIRST ORDER LINEAR RECURRENCES

MiNngyYoNnGg XU

ABSTRACT. In this paper we discuss the Hyers-Ulam-Rassias stability of a
system of first order linear recurrences with variable coefficients in Banach
spaces. The concept of the Hyers-Ulam-Rassias stability originated from
Th. M. Rassias’ stability theorem that appeared in his paper: On the
stability of the linear mapping in Banach spaces, Proc. Amer. Math.
Soc. 72 (1978), 297-300. As an application, the Hyers-Ulam-Rassias
stability of a p-order linear recurrence with variable coefficients is proved.

1. Introduction

Hyers-Ulam stability is a basic sense of stability for functional equations. In
1940, S. M. Ulam proposed the following problem:

Given a group G, a metric group (G ,-, ) and a positive number ¢, does
there exist a constant § > 0 depending on ¢ such that, if f: G — G’ satisfies
the inequality o(f(zy), f(z)f(y)) < & for all z,y € G, then there exists a
homomorphism ¢ : G — G such that o(f(z), ¢(z)) < € for all z € G?

In case of a positive answer to the previous problem, we usually say that the
Cauchy functional equation ¢(zy) = p(z)p(y) is stable. In 1941, D. H. Hyers
[5] first proved that the Cauchy equation f(z +y) = f(z) + f(y) is stable in
Banach spaces. Later, the Hyers-Ulam stability was studied extensively and
also, the notion of the original Ulam problem was generalized (see, e.g., [4,
6, 11, 12, 14]). Most of the papers discussed the stability of the continuous
functions in several variables. In 2005, the discrete case for equations in single
variable was investigated by D. Popa [9, 10], concretely to say, first the Hyers-
Ulam-Rassias stability of the first order linear recurrence

(11) Tn+1l = AQnln + bn7

was studied in [9], then the obtained results have been generalized to a p-order
linear recurrence with constant coefficients [10]

(1.2) Trgp = Q1 Tngp—1 + ** + QpTp + bp.
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In this paper we discuss the Hyers-Ulam-Rassias stability of a system of first
order linear recurrences with variable coefficients
(1.3)
z1(n + 1) = a1 (n)z1(n) + a12(n)z2(n) + - - - + arp(n)zp(n) + bi(n),
z2(n + 1) = az1(n)z1(n) + aza(n)z2(n) + - -+ + azp(n)zp(n) + b2(n),

2 (n+ 1) = ap ()21 (n) + apa(n)zs(n) + - - + app(n)ay(n) + by(n).

As an application, the Hyers-Ulam-Rassias stability of a p-order linear recur-
rence with variable coefficients

(1.4) Tntp = Gp—1(N)Tnyp-1 + - + ao(n)Tn + by,

is proved.

2. Stability of the system (1.3)

In what follows we denote by K the field C of complex numbers or the field
R of real numbers, N the positive integers, Ny the nonnegative integers and
KP*P the vector space consisting of all p X p matrices. Let (E,|| - ]|) be a
Banach space over K, Q is a product space of E, X = (z1,2s,...,2,)7 € Q (T
denotes transposition), where z; € E(i = 1,2,...,p). On Q, we get the norm
as || X |loo = maxi<i<p ||2s|], then it can be easily checked that (Q, ||| ) is also
a Banach space over K.

Matrix A = (aij)pxp € KP*? acting on X € Q can be regarded as a linear

p
operator A : Q@ — Q, then one can verify that ||A||cc = maxi<i<p Y |ai;| being
Jj=1
subject to the vector norm || - ||o . For any X € Q, A € KP*? B € KP*P, we
have || AX |loo < [[Allos | X1lo0s [[ABlloo < [l Alloo || Bl oo-
For each n € Ny, define

z1(n) ai(n) aa(n) - ap(n) |
X, e 552:(”) A 021:(") a22:(n) : a2p:(n) ’
p(n) an(n) ap(n) - agpln)
bi(n)
B bg(.n)
bo(n)

Then the system (1.3) can be rewritten as

(25) Xn+1 = A X, + B,, ne¢ Ny.
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Lemma 1. If the sequence (X,)nen, satisfies the relation (2.5), then

n—1

(26) Xn=An14n2--AoXo+ Y An_1An g+ AxBx_1 + Bn_1, n > 2.
k=1

Proof. It can be easily proved by induction. For n = 2 the relation (2.6)
becomes

which is true according to the relation (2.5). Suppose that (2.6) is true for a
fixed n > 2, we have to prove that

(27) Xnpr=AnAp1- AXo+ Y AnAn_i-- AxBi_1 + By
k=1

In virtue of the relation (2.5) and (2.6), it follows that
Xn+1

n—1
Ap (An—lAn—2 - Ao Xo + Z Ap 1An 9 - ApBr_q + Bn~l> + B,
k=1

ApAn_1 - AoXo + Z AnAp_1 -+ ABpq + B,,.
k=1

Hence, the relation (2.7) is true for every n > 2. 0

Theorem 1. Let A, € KP*P be a nonzero matriz for every n € Ny, (€n)nen,
be a sequence of positive numbers with the property lim inf m >1. If

the sequence (Yn)nen, in Q satisfies the inequality
(28) ||Yn+1 - AnYn — Bn“oo S En, n e N(),

then there exists a sequence (X,)nen, in Q given by (2.5) and a positive con-
stant Lo such that

(2.9) X0 = Yulloo < Loen_1, n€ N.

Proof. If the sequence (Y, )nen, in Q satisfies the inequality (2.8), then we can
denote that

(210) Yn+1 = AnYn + Bn + Cn, ne N(),

where C, = (c1(n),c2(n),...,c,(n))T € Q, ||Cnlleo < €n for every n € Np.
From Lemma 1, the general solution of (2.10) can be obtained as
(2.11)
n—1
Yo=A4n1---AYy + Z Apn1An_9- - Ap(Br-1 + Ci—1) + (Bp—1 + Cr—1).
k=1
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Define the sequence (X, )nen, in Q given by (2.5) with X := Yp, then

n—1

= ||[Ap—1--AoXo + Z Ap_1+ ApBr_1+ Bpoy — An_1--- AoYo
k=1

n—1
=" Ani1Anss - A(Bicy + Cim1) = (Baot + Cnt)lloo
k=1
n—1
= | Z An_1An_2- - ApCr_1 + Cnilleo
k=1

n—1
< Z |An—1An—2 - Ak||lccEk-1 + En—1-
k=1

Taking account of the condition lim inf E—:l—ﬁfm > 1, there exists a constant
go and ng € N such that

En
En—1||Anlloo

which implies that

(2.13) >qo>1 foralln > ng,

En—1 > En-1 En—2 . Ek
tb1llAn_1An_2 Akl = En—2l|lAn-1lloc En—3llAn—2llc  €k-1ll4Aklloo
(2.14) > g% n>k>ne.

Hence for every n > ng, we have

n—1
Z “An—lAn—2 e Ak“ooek-—l + En—1
k=1
no—1 n—1
= Y [l Ano1 o Akllooskor + D Ano1 -+ Aklloogis +en1
k=1 k=ng
no—1
S HAn—lAn—Q o Ano”oo Z “Ano—lAno—2 ot Ak”ooek—l
k=1
n—1
+ 3 An-14n s AkllooEh1 + €n1
k=ng
€ no—1 n—1 c
- -1
< ;nl_ng Z | Any—1Any—2 - Akllcor—1 + Z - +En1
Eno—14y k=1 k=no 10
1 = 1
< (Eno—l Z ||Ano_1An0_2 .. 'Ak“oogk—l + ﬁ + 1)6n_1.

k=1
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In view of (2.12), it is enough to take

no—1
1
LO Z Eng—1 ; HAno—lAno—2 t 'AkHoosk—l + qo—_l' + ]-a
and such that || X, — Yy, ||ec < Logn_; for 1 < n < ng. O

Theorem 2. Let A, € KP*P be an invertible matriz for every n € Ny,
(€n)nen, be a sequence of positive numbers with the property

€n

lim sup 47 oo < 1.

En—1
If the sequence (Y, )nen, in Q satisfies the inequality
(2.15) IYat1 — AnYn = Bolloo < €n, n € Ng,

then there exists a sequence (Xp)nen, in S given by (2.5) and a positive con-
stant Ly such that

(2.16) |Xn = Yallso < L1en_1, n€ N.

Proof. If the sequence (Y, ),en, in § satisfies the inequality (2.15), then we
can also denote that (Y, )nen, satisfies the relation (2.10). Then we discuss the

+o0
convergence of the series Y. Ag'AT!--- A7 C,_;. The series

n=1

+ o0
Z ||A61Af1 T 'Ar_LiluooEn—l
n=1

is convergent in virtue of D’Alembert test since

—1 4—1 —
140 AT A |ootn < lim sup En

limsup ———— —
4o 1A1 L ”Anillloogn—l E€n—1

147 loo < 1.

-+o0
So, the series AGtATY - ATL €Ly is also convergent by considering that
— 0 1 n—1 g
451 AT" - AL Coctlloo < NIAGTT AT - A7 Hloognn.

+o0
Define §:= 3 Ag'A7' - A1 Coy € Q, and (Xn)nen, in 2 given by (2.5)
n=1 .
with Xy := Yy + 5, then

n—1

(217) Xp =Anq1A4n_2--A(Yo+S) + Z Ap1An_9- - ABr_1 + Bp_1.
k=1



846 MINGYONG XU

By (2.11) and (2.17), we have
(2'18) “Xn - Yn“oo

n—1
= ||An-14n-2-- 408 =Y An 1An - AkCh1 — Cnalloo
k=1
+oo n
= |lAn1-- 40D Agt AL G = D AGT - AL Cr)lleo
k=1 k=1

+oo
= lAn14n2---4Ao Y Ag'AT' - A Chillo
k=n+1

+0o0
= 1D A" A0 - A Cnskllso
k=0

+o00
< DI ol A oo - 1AL e llooE sk
k=0

En

From the condition limsup ;%2—||A; || < 1, there exists n; € N and a con-
stant ¢; < 1 for all n > ny, we have

En

(2.19) 47 oo < a1 < 1,

n—1

which implies that

(2.20) 47 oo -+ IAT plootnre < @47 oo~ 14T ey llcmskn
< GlA oo - ||A;41-k-2||o<=5n+k—2
S q{H—lEn—la k 2 0.

Therefore, by (2.18) and (2.20), we have

+oo
q
“Xn - Yn”oo < en—lz Qf—H = 1 L En—1, N 2>N1.
k=0 —q
So it is enough to take L; > 1—31‘1—1 and such that || X, — Ya|leo < L1£n—1 for all
1<n<n;. O

3. Stability of the recurrence (1.4)

In what follows we give applications of Theorem 1 and 2 to the Hyers-Ulam-
Rassias stability of the p-order recurrence (1.4).

Corollary 1. Let E be a Banach space over K, (b,)nen, be a sequence in E, and

(En)nen, be a sequence of positive numbers with the property lim inf - = > 1
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where f, = max{l,|ag(n)| + --- + |ap—1(n)|}. If the sequence (yn)nen, in E
satisfies the inequality

(3.21) Wyntp — (ap—l(n)yn-l—p—l + -t ao(n)yn +bn)|| <en, nE Ny,

then there exists a sequence (z,)nen, in E given by (1.4) and a positive constant
Lo such that

(3.22) |Zn — ynll < Laen—1, n € N.
Proof. Let z1(n) := Znyp_1,22(n) := Tpyp_sg,...,Tp(n) := x,, then the recur-
rence (1.4) is equivalent to the system (2.5) with B, := (b,,0,...,0)T and
ap-1(n) ap_2(n) ap-3(n) -+ a(n) ao(n)
1 0 0
0 1 0 o 0 0
An:=1 0 0 1 0 0
0 0 0 e 1 0

It is easy to see that the property liminf enf’; > 1is equivalent to the con-
dition lim inf a—n__lﬁALnlI: > 1 and the inequality (3.21) is equivalent to the
inequality (2.8) with Y}, := (Yntp—1,Yntp-2,---,Yn)" - So, according to Theo-
rem 1, there exists a sequence (X,,)nen, given by (2.5) and a positive constant
L4 such that “Xn - Yn”oo < Lsép_1,mn€EN.

Let z,, := p1(X,) for X,, € Q and n € Ny, where p; : Q — E is given by:
p1(21,22,...,2p)" := 2,. Clearly z,, is a solution of (1.4) and (3.22) holds. O

Corollary 2. Let E be a Banach space over K, (b,)nen, be a sequence in E, and
(€n)nen, be a sequence of positive numbers with the property lim sup —S2—e,, <

En—1
I4]ai(n)[+--+|ap_1
lao(n)]

1 where e, = max{l, (")l}. If the sequence (Yn)nen, in E

satisfies the inequality

(3.23) Wyntp — (ap—l(")?ln+p—1 ++ao(n)yn +bn)|| < en, nE N,

then there exists a sequence (T, )nen, in E given by (1.4) and a positive constant
Ls such that

|zn — ynll < L3en_1, nE€ N.

Proof. The recurrence (1.4) is equivalent to the system (2.5) with X,,, B, 4,
defined as in Corollary 1 and then

0 1 0 0

0 0 1 0
A—l — . . .. .

0 0 0 1

1 —ap—1(n) —ap_2(n) . —ai(n)

ag(n) ag(n) ag(n) : ag(n)
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It is easy to see that the property lim sup E—f"_—len < 1 is equivalent to the con-
dition limsup -*-||4;"||oc < 1. Thus our result can be obtained by applying
Theorem 2. g

Example 1. Let (£,)nen, be a sequence of positive numbers with e, = 3%

and consider the system

(2n + Dz2(n) + bi(n),

(n+1) = 2nz1(n)
(3.24) { ” i nxl( ) + (n + 1)z2(n) + ba(n).

(
on+1)=(n-1

)
Suppose that Y, = (y1(n),y2(n))T in Q is an approximate solution of system
(3.24) satisfying

||Yn+1 - AnYn - Bn“oo S Eny n e NO;

_ 2n 2n+1 _{ bi(n)
An = ( n—1 n+l )’ Bn = ( ba(n) -
Then there exists a solution X, = (z1(n), z2(n))T of (3.24) such that
“Xn_Yn”oo stn—la ne N.

where

Proof. For all n € N, we have 5—5"_—1||A;1||oo = :133_71_4’——_1 < 2 # < 1. By Theorem 2,

2
it follows that || X, — Yol < 27En-1 = 26n-1,m € N. O
3
Example 2. Let (e,)nen, be a sequence of positive numbers with e, = 5
and consider the recurrence
2n+3 2n+1

" n bn'
T R T

Suppose that (yn)nen, is a sequence in E satisfying the inequality

(325) Tn42 =

2n+3 2n+1

_— - <e n € Np.
Yn+2 n+2y"+1 nt1 < €p, 0

yn _bn

Then there exists a solution (2, )nen, of (3.25) such that

|Tn — ynl| < 8€n—1, n € N.

Proof. For all n € N, we have

14+ 2n+43 1
en:max{]_, ___n¥2] =ma’x{]_,(3L5)(n_+_l)}<_6'

ntl Cn+1)(n+2)) — 9

which implies that f_—len <8 5 < lforalln € N. By Corollary 2, it follows
that ||2n — ynlleo < 1—_%15511—1 =8¢n-1,n EN. a.
9
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