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NEW ITERATIVE PROCESS FOR THE EQUATION
INVOLVING STRONGLY ACCRETIVE OPERATORS IN
BANACH SPACES

LiNG-YAN ZENG, JuN L1, AND JoNG Kyu Kim

ABSTRACT. In this paper, under suitable conditions, we show that the
new class of iterative process with errors introduced by Li et al converges
strongly to the unique solution of the equation involving strongly accre-
tive operators in real Banach spaces. Furthermore, we prove that it is
equivalent to the classical Ishikawa iterative sequence with errors.

1. Introduction and preliminaries

Throughout this paper, let X be a real Banach space with dual space X*,
and (., .) denote the pairing of X and X*. Let J : X — 2X" be the normalized
duality mapping defined by

J(@) ={z" € X" : {z,z") = |lz|* = |2"|I’}, ze€X.
Definition 1.1. Let D be a nonempty subset of X and T : D — D be a
mapping,
(1) T is said to be accretive if for any z,y € D, there exists j(z — y) €
J(z — y) such that
Tz —Ty,j(z-y)) 2 0.
(2) T is said to be strongly accretive if for any z,y € D, there exists
jlz —y) € J(z —y) and a constant k € (0,1) such that
(Tz Ty, j(z —y)) > kllz - yl*,

where k is the strongly accretive constant of T'.
(3) T is said to be strictly pseudocontractive if I —T (I denotes the identity
operator) is strongly accretive.

Let S : X — X be a mapping. In [13], Li et al introduced the following
new iterative process with errors: For any given u; € X(i = 0,1,...,p), where
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p € N is a fixed number. The sequence {un}a2 ., in X is defined by

(1.1) Un = (1= Bn)tn + BnStn+n,, n=0,1,...,
' Un+1 :(l_an)un+ansvn—p+£na n=pp+1,...,

where {£,}, {n.} are arbitrary sequences in X and {a,}, {8,} are sequences in
[0, 1] satisfying some conditions.

If 7, = & = 0 for all n > 0, then the iterative process {un}o,.; defined
by (1.1) reduces to

vp = (1 = B)un + BuSu,, n=0,1,...,
Unt1 = (1 —op)un + 0nSvyu—p, n=p,p+1,...,

which has been investigated by Li [12].
If 8, = 0 for all n > 0, then the iterative sequence {un}p>,,, defined by
(1.1) reduces to

Uns1 = (1~ ap)tin + 0pSUn_p+ &, n=p,p+1,....

As is well known, for any given zo € X, the Ishikawa iterative sequence
{zn}22, with errors [7] is defined by

{yn:(l_ﬂn)xn+ﬂn‘5’xn+7ln, n=20,1,...,

(1.2) Tot1 =1 —an)tpn + anSy,+ &, n=0,1,...,

where {£,}, {nn}, {an},{Bn} are the same as in (1.1).
If 3, =0, then the iterative sequence {z,}32, given in (1.2) reduces to

Zot1 = (1= apn)Tn + @nSyn + &, n=0,1,...,

which is the Mann iterative sequence with errors.

The stability and the convergence problems of Ishikawa and Mann itera-
tive sequences have been studied by many authors for approximating the fixed
points of some nonlinear mapping and for approximating solutions of some
nonlinear operator equations in Banach spaces (see, for example, [1-15, 17]).
Recently, Li [12] introduced a new kind of iterative procedure involving con-
tractive mapping, gave a proof of the convergence for it, and under certain
conditions, he showed that it is equivalent to the convergence of Ishikawa it-
erative sequence. In 2005, the convergence of this class of iterative sequence
involving quasi-contractive mapping with errors has been further studied by Li
[13] et al.

In this paper, under suitable conditions, we prove that the iterative process
with errors defined by (1.1) converges strongly to the unique solution of the
equation involving strongly accretive operators in real Banach spaces. More-
over, we establish the equivalence between (1.1) and (1.2).

Lemma 1.1 ([3]). For any given z,y € X, we have
Iz +ylI* < ll2ll® + 2y, 5 (= + 9)), Vi(z +y) € J(@ +y).
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Lemma 1.2 ([2]). Let T : X — X be a strongly accretive operator. For any
given f € X, define S: X — X by Sz = f+x —Tx, Vo € X. Then for any
giwen z,y € X, there is j(x —y) € J(z —y) such that

(Sz— Sy, j(z —y)) < (1= k)|l -yl
where k € (0,1) is the strongly accretive constant of T.

Lemma 1.3 ([14]). Suppose that {an}22 o, {bn}o and {ca}2, are nonneg-
ative real sequences and there exists a positive integer no € N such that

A1 S (1 - tn)an + bn + Cn, vn 2 no,

where {tn}72 0 C [0,1], Y02t = 00, by = o(t,) and 350 ¢, < co. Then
lim, - a, = 0.

Lemma 1.4. Let T : X — X be a strongly accretive operator. For any given
fe€X, defineS:X - X bySzx=f+xz—Tx, Ve e X. Then S has a unique
fized point. Conversely, if x* is a fized point of S, then z* is a solution of the
equation Tz = f.

Proof. From the result of Martin [16], we know that the equation Tz = f has
a solution. Let z* be a solution of the equation, that is, Tz* = f. Then
Sz* = f+2* —Taz* = f+3* — f = 2, that is to say, z* is a fixed point of
S. Suppose that y* is also a fixed point of S. Since T is a strongly accretive
operator, it follows from Lermma 1.2 that

(L =K)llz” = y*|I* > (Sz* — Sy*,j(z* — y*))
= (=" =y i@ —y) = |lz* —y*|?,
which implies that z* = y* since k € (0,1), and thus z* is a unique fixed

point of S. Conversely, let z* be a fixed point of S. Then, one has Sz* =
f+2* —Tz* = 2*, that is, Tz* = f. This completes the proof. O

2. Convergence results

Theorem 2.1. Let T : X — X be a uniformly continuous strongly accretive
operator. For any given f € X, define S : X — X by Sz = f +z - Tz,
V& € X. Denote by F(S) the set of fized points of S. Suppose that R(I —T) is
bounded, where R(I —T) denotes the range of I — T. Suppose that {£,}, {1}
are sequences in X and {an}, {fn} are sequences in [0, 1] satisfying

(1) ZZOZO Opn = 00, ap = 0 and B, — 0(n — o0);

(%) Yonto ll€nll < 00, llmmll = O(n — o0).
Then for any given u; € X(i = 0,1,...,p), the iterative sequence {untoZ
defined by (1.1) converges strongly to z* in F(S). Furthermore, z* is a solution
of the equation Tz = f.

'To prove Theorem 2.1, we first give the following lemma.
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Lemma 2.1. Suppose that all assumptions in Theorem 2.1 are satisfied. Then
the following statements are true:
(1) My =sup{||Sz —z*||:z € X} + 30, llui — z*|| < oo;
(@) llunss — || < My + S0, il < M, Vn > p, where M = My +
2o lIgill;
(3) Mf =sup{||Sz—z*||:z € X} + ||zo — z*|| < o0;
(4) |[#ny1 —*|| < My + 30 o l&ll < M*, VYn >0, where M* = M} +
Yizo lI&ll-
Proof. Since R(I — T) is bounded, so is the range of S. Thus there exist
constants M; and M such that

p
M; =sup{||Sz —z*||:x € X} + Z [|u; — z*|| < 00

=0

and

M} =sup{||Sz ~z*||: 2 € X} + ||zo — 2*|| < 00,
which imply that conclusions (1) and (3) hold.
Next, we prove the conclusion (2) holds. In fact, from (1.1), we have for
n=pn,

lupy1 — 2"

Il

(1 = ap)up + apSve + &, — z*||
llup — "Il + ISvo — =*|| + Il

P - P
sup{l|Se - a*l| v € X} + 3 lus — *ll + 3l
=0

=0

IN

IA

P
< Mi+) ll&ll € M,
i=0
where M = My + Y2, ||&||. Suppose that conclusion (2) holds for n = k —
1(k > p+1). For n = k, it follows from (1.1) that

lursr — 27| = M1 — o) (ur ~— 2%) + o (Sve—p — =) + &l
< (U= ap)llue — 2| + axllSvr—p — 2" + 11l
k—1
< (L= ap)(Mi+ Y 1IG]) + ar M + [|&]]
=0
k
< M+ llGl < M,

i=0
which implies that conclusion (2) holds for n = k. Thus conclusion (2) holds
for all n > p.
Finally, we show that conclusion (4) is true. If n = 0, then from (1.2) we
have

llzr = 2"l = [[(1-ao)(@o —z") + a0 (Syo — =) + &l
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< lwo — ¥l + [[Syo — 2| + ||

where M* = M} + 32 ||&]l. Suppose that conclusion (4) holds for n =
k~1>0. For n = k. we have from (1.2),

l2ht1 — 27| (X = ar)(ze — 27) + e (Syx — 27) + &l

< (1= aw)llze — ¥ + arl|Syk — =¥ + ||&]|
k—1
< (L= ad) (M5 + DNl + awdy + g
1=0
k
< M7+ Jlal < M

=0

which proves that conclusion (4) holds for n = k, and thus conclusion (4) is
true for all n > 0. This completes the proof. n]

The Proof of Theorem 2.1. From (1.1), Lemmas 1.1 and 1.2, and conclusion
(2) of Lemma 2.1, for any n > ny, there exists j(uny1 — %) € J(Upy1 — *)
such that

g1 — 2"
(1 = ) (i — ) + Ctn (Stn_p — ) + &nl?

< (1= an)?|lun = 2| + 2{an(Svn_p — ) + €n, § (Uny1 — 7))
(23) < (1-o0n)*|lun —2*|I* + 20n(Svn—p — Stins1,J(uns1 — £¥))
+20n(Sun+1 — T, j{Untr — 27)) + 26, j(Untr — 7))
< (1= an)(lun = 2| + 2an/|Svn—p = Suntillluns1 = 2*||

. +2an(1 = k)|junt1 — m*”z + 2||é.[| M,

where k € (0,1) is the strongly accretive constant of T', M; and M are the
same as in Lemma 2.1.
Set

dn = [|Svn—p = Stnta|llunss — z7|1.
We show that d,, = 0(n — o0). In fact, by virtue of (1.1), we have
(2.4)  lvn-p = un41l]
(1 = Br—p)tin_p + Br—pStn—p + Mn—p — (1 = @n)tin — @ Svn_p — &nl|

< M= Baep)tn—p — (1 = an)unll + BapllStn—pll + anl|Sva_ll
Hl[7m—pll + NIl
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and
(25) [} = Br—p)un—p — (1 — an)unll
= |[(1 = an)un — (1 = Bn_p)tin_pl|
= ”(1 - an)[(l - an—l)un—-l + Otn_1SUn—1—p + £n—1] - (1 - /Bn—p)un——p“
= (1=-an)(l—an-1)tn_1+(1- ) Un—1SUn—1-p + (1 — 0 )en—1
-(1- ﬂn—p)un—p“
= I [T G-edunsp+ D J[(1-ei)aj-1Sv-1-
i=n—p J=n—p+li=j

+ Z H(l — ai)§j—1 = (1 = Bn—p)tin—pl|

j=n—p+1li=j

= “[ H (1 - ai) -1+ Bn—p]un—p + Z H(l - ai)aj_lSvj_l_p
i=n—p j=n—p+1i=j

+ Y JJa-engal

j=n—p+li=j

= [I -ad =14 Buslliunsl+ 3 [l —a)Svj—1ll
i=n—p j=n—pt+li=j

+ > J[a-a)ligal

j=n—p+1i=j

From Lemma 2.1, {u,}, {Su,}, {Sv,} are bounded sequences in X. Again
since Yoo o |l€nll < 00, an = 0,8, = 0,]|na]] = 0(n — o0), it follows from
(2.3) that ||(1 = Bn—p)tn—p — (1 — ap)u,|| = 0(n — oo), and hence from
(2.2), ||vn—p — tn+1]| = 0(n — o0). Since T is uniformly continuous, so is S.
Therefore,

(2.6) |Svn—p — Stnt1]| = 0(n = o0).

From (4) of Lemma 2.1, we know that {||un+1 — *||} is bounded. It follows
from (2.4) that d,, = 0(n — o).
From (2.1), we have
27)  |luntr — 27|
< (1= an)|un — ¥ + 2andn + 205 (1 — k) |Juns1 — z*||2 + 21|€. ]| M.
Since a, — 0(n — o), there exists a positive integer n; such that for any

n > ni, 2a, <1, and so 2a,(1 — k) <1—k, ie, 1—2a,(1—-k) > k. It follows
from (2.5) that for any n > ny,

(2.8) llunts — 2%
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(l_an)2 2 20ln 2
n = * n n M
S Ta,a -l NS ey s L e Py s gL
2k — « 2 2
<o 2k-an g 2 211l
< M= T elun =2 + fands + 216,

Since #ﬁ"_k) — 2k(n — 00), there exists a positive integer no(> n) such

that
2k — ay,
1-2a,(1-k)

and thus (2.6) allows that

>k, VYn>ng,

200, 2
(29) llunss =271 < (1~ kan)llun = 2*” + =" dn + L&l M, V0> no.

Set an = [lup — a*[|?,b, = 22ada ¢, = 2||£,||M and t, = ka,. It follows from
(2.7) that

Gn41 S (1 - tn)an + bn +cn

for all n > ng. Since a,,bn, c,, and ¢, satisfy all conditions of Lemma 1.3, we
obtain that limn,_,o a, = 0, and so lim,_,c 4, = z*. By virtue of Lemma 1.4,
z* is a solution of equation Tz = f. The proof is complete. O

Theorem 2.2. Assume that all assumptions in Theorem 2.1 hold. If R(I —T)
15 bounded, then the following statements are equivalent:

(1) {un}s,y1 defined by (1.1) converges strongly to z*.
(2) {zn}S2, defined by (1.2) converges strongly to =*.

Similarly, we first show the following lemma.

Lemma 2.2. Assume that all the assumptions in Theorem 2.2 hold. Then
|un — || = 0(n — 00).

Proof. From (1.1), (1.2), Lemmas 1.1 and 1.2, we have that for any n > 0,
there exists j(unt+1 — Znt1) € J(Uns1 — Tnyr) such that

(2.10) [tnt1 = Eppa ||

(1 = an)un + anSvn_p + &n — (1 — an)zn — anSyn — &

11— an)(un —zn) + an (Svn—p — Syn)||2

(1- an)2||un - anQ + 2an<Svn—p — SYn, j(Unt1 — Tnt1))

(1= @n)?|[un — @n®

+20(SVn—p = SYn = (Sunt1 — STny1), J(Unt1 — Tnt1))
+2an(Sunt1 — STpi1, j(Unt1 — Tnt1))

IA N
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< (- an)2llun - anZ
+20,[(Svn—p — Stnt1,J(Unt1 — Tnt1))
HSTnt1 = SYn, j(Unt1 — Tny1))]
+20n(1 = k)lJunt1 — Tnpa|?
< (1= n)?|lun — zal® + 2an(d;, +e;) + 20m(1 = k)llunt1 — Znpall®,
Wher(ﬁ dyy = |1Svn—p — Stnt1||l[unt1 — ot |l and e = [|STni1 — Synllllunts -
o1l

Note that (2.4) implies that ||Svn—p — Stn41]] = 0(n — 00). Again from
(2) and (4) of Lemma 2.1, we have

211)  Ifuntt = @npall € ngs = [+ lenss — 2*ll S M+ M* < oo,

It follows that d,; — 0(n — 00). Next, we prove e, — 0(n — 00). From (1.2),
we have

“yn - wn-{-l” ||(an - ,Bn)xn + ,anxn - ansyn + Nn — g'n”
(2.12) (an = B)llznll + BullSzall + anllSynll + lI7all + [1nll-

From (3) and (4) of Lemma 2.1, we know that {z,},{Sz,} and {Sy,} are
bounded sequences in X. Since a,, = 0,8, = 0,]|&]l = 0, |Inll = 0(n — o0),
it follows from (2.10) that ||yn —~ Znt1]l = 0(n — o). Since T is uniformly
continuous, so is S, and $0 ||STpt1 — Synll = [|SyYn — STyl = 0(n — o0).
Then inequality (2.9) allows that e, — 0(n — 00), and thus d;; +e,, = 0(n —
00).

Since ay, — 0(n — o0), there is a positive integer ny such that 2a, < 1 for
any n > n1, and hence 2a,(1 — k) < 1 -k, that is, 1 — 2an(1 — k) > k. From
(2.8), we have for any n > ny,

(1 - an)®
1-20,(1-k)
2k — ay,
< et
< 1w
2k—a

eyt 2k(n — o), there exists a positive integer no(> n1)

IN

20y,

g4 2om
lun = 2nll” + T T =

lunt1 — zng1l? < (d, +ep)

2 _ _
anllltn — zo|> + —an(d; +€,;)-

(2.13) -

Again since 1—
such that
2k — ay,
1-2a,(1-k)
and it follows from (2.11) that

>k, Vn>ng,

20, , _
(214) |lun+1 — 117n+1||2 S (1 bl kan)||un - .’l7n||2 + —kf—l(dn + 6n), Vn Z no.

Setting an = [|un — znl|?, bn = 282 (d;; +e€;),cn = 0 and ¢, = kay. Then from
(2.12), we have

An41 S (1 - tn)an + bn +cn
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for all n > ng. Since ay,,bn,c,, and t, satisfy all conditions of Lemma 1.3,
limp,_,00 an = 0, and 80 lim, e [Jun — 2,|| = 0. This completes the proof. O

The Proof of Theorem 2.2. From Lemma 2.2, we know that |lu, — z,|| —
0(n — o0).

(1)== (2). Since lim,_,00 4, = =%, we have ||z, — 2*|| < ||t —2* ||+ ||Zn —
Un|| = 0(n = o), that is, lim,_,c Z, = z*.

(2)== (1). Since lim, o T, = x*, we obtain ||u, — z*|| < ||un — z,|| +
lzn — 2*|| = 0(n — 00), and so lim,_, %, = z*. The proof is complete. O
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