DOI QR코드

DOI QR Code

Effect of Growth Temperature on the Properties of Hydrogenation Al-doped ZnO Films

기판 온도에 따른 수소화된 Al-doped ZnO 박막의 특성 변화

  • Tark, Sung-Ju (Department of Materials Science and Engineering, Korea University) ;
  • Kang, Min-Gu (Department of Materials Science and Engineering, Korea University) ;
  • Lee, Seung-Hoon (Thin Film Materials Research Center, Division of Materials, Korea Institute of Science and Technology) ;
  • Kim, Won-Mok (Thin Film Materials Research Center, Division of Materials, Korea Institute of Science and Technology) ;
  • Lim, Hee-Jin (Department of Materials Science and Engineering, Korea University) ;
  • Kim, Dong-Hwan (Department of Materials Science and Engineering, Korea University)
  • 탁성주 (고려대학교 신소재공학과) ;
  • 강민구 (고려대학교 신소재공학과) ;
  • 이승훈 (한국과학기술연구원 재료연구부 박막재료연구센터) ;
  • 김원목 (한국과학기술연구원 재료연구부 박막재료연구센터) ;
  • 임희진 (고려대학교 신소재공학과) ;
  • 김동환 (고려대학교 신소재공학과)
  • Published : 2007.12.31

Abstract

This study examined the effect of growth temperature on the electrical and optical properties of hydrogenated Al-doped zinc oxide (AZO:H) thin films deposited by rf magnetron sputtering using a ceramic target (98 wt.% ZnO, 2 wt.% $Al_2O_3$). Various AZO films on glass were prepared by changing the substrate temperature from room temperature to $200^{\circ}C$. It was shown that intentionally incorporated hydrogen plays an important role on the electrical properties of AZO : H films by increasing free carrier concentration. As a result, in the 2% $H_2$ addition at the growth temperature of $150^{\circ}C$, resistivity of $3.21{\times}10^{-4}{\Omega}{\cdot}cm$, mobility of $21.9cm^2/V-s$, electric charge carrier concentration of $9.35{\times}10^{20}cm^{-3}$ was obtained. The AZO : H films show a hexagonal wurtzite structure preferentially oriented in the (002) crystallographic direction.

Keywords

References

  1. A. Yamada, W. W. Wenas, and M. Yoshino, Jpn. J. Appl.Phys., 30, L1152 (1991) https://doi.org/10.1143/JJAP.30.L1152
  2. M. Mizuhashi, Y. Goto and K. Adachi, Jpn. J. Appl.Phys., 27, 2053 (1988) https://doi.org/10.1143/JJAP.27.2053
  3. W. S. Lan, and S. J. Fonash, J. Electron. Mater., 16,141(1987) https://doi.org/10.1007/BF02655478
  4. B. O. Park, K. H. Ko, and J. H. Lee, J. Cyst. Growth, 247,119 (2003) https://doi.org/10.1016/S0022-0248(02)01907-3
  5. S. B. Majumder, M. Jain, P. S. Dobal, and R. S. Katiyar,Mater. Sci. and Eng., B 103, 16 (2003) https://doi.org/10.1016/S0921-5107(03)00128-4
  6. C. G. Van de Walle, Phys. Rev. Lett., 85, 1012 (2000) https://doi.org/10.1103/PhysRevLett.85.1012
  7. C. G. Van de Walle and J. Neugebauer, Nature, 423, 626(2003) https://doi.org/10.1038/nature01665
  8. J. O. Barens, D. J. Leary, and A. G. Jordan, J. Electro-chem. Soc., 7, 1636 (1980) https://doi.org/10.1149/1.2129966
  9. M. Chen, Z. L. Pei, X. Wang, C. Sun, L. S. Wen, J. Vac.Sci. Technol. A, 19(3), 963 (2001) https://doi.org/10.1116/1.1368836
  10. M. K. Puchert, P. Y. Timbrell, and R. N. Lamb, J. Vac. Sci.Technol. A, 14(4), 2220 (1996) https://doi.org/10.1116/1.580050
  11. K. H. Kim, K. C. Park and D. Y. Ma, J. Appl. Phys., 81,7764 (1997) https://doi.org/10.1063/1.365556
  12. A. F. Kohan, G. Ceder, D.Morgan, and C. G. Van de Walle,Phys. Rev., B 61, 15019 (2000) https://doi.org/10.1103/PhysRevB.61.15019