DOI QR코드

DOI QR Code

Austenite Precipitation Behaviors with Solidification Rate and N Solubility in Cast Duplex Stainless Alloys

주조용 이상스테인리스강에서 응고속도 및 질소고용도에 따른 오스테나이트 석출 거동

  • Lee, Jong-Yeop (Dept. of Materials Sci. and Eng., Changwon National University) ;
  • Lee, Je-Hyun (Dept. of Materials Sci. and Eng., Changwon National University) ;
  • Kim, Sang-Sik (Dept. of Materials Sci. and Eng., Gyungsang National University) ;
  • Choi, Byung-Hak (Dept. of Metallurgy and Materials Eng., Kangnung University) ;
  • Kim, Sung-Jun (Dept. of Environmental Materials, Korea Inst. of Materials) ;
  • Son, Hee-Young (Materials Engineering Division, KPC Ltd.)
  • 이종엽 (창원대학교 재료공학과) ;
  • 이재현 (창원대학교 재료공학과) ;
  • 김상식 (경상대학교 재료공학과) ;
  • 최병학 (강릉대학교 금속재료공학과) ;
  • 김성준 (한국기계연구원-재료연구소 환경재료연구부) ;
  • 손희영 ((주) KPC, 소재사업부)
  • Published : 2007.12.31

Abstract

Austenite precipitation behavior was studied with solidification rates and alloying contents, N and Cr, in duplex stainless steels by directional solidification. Directional solidification experiments were carried out with solidification rates, $1{\sim}100mm/s$, and N and Cr contents, $0{\sim}0.27wt.%,\;25{\sim}28wt.%$ respectively, in a duplex stainless steel, CD4MCU. As the solidification rate increases, the dendrite spacing reduced and the austenite phase in the ferrite matrix became finer. The volume fraction of austenite phase increased and its shape went to be round with increasing nitrogen contents in duplex stainless alloys. The Cr alloying element, even though it is a ferrite former, showed to enhance the nitrogen solubility in the alloy and caused the austenite round and finer. Also, Cr was supposed to decrease the austenite volume fraction, but it increased the austenite slightly due to increasing nitrogen solubility during solidification.

Keywords

References

  1. C. H. Shek, K. W. Wong, J. L. Lai, and D. J. Li, MaterialsSci. Eng., A231, 42 (1997) https://doi.org/10.1016/S0921-5093(97)00077-4
  2. J. H. Huang, C. J. Alstertter, Metallurgical Transactions A,26, 1079 (1995) https://doi.org/10.1007/BF02670603
  3. Y. H. Park and Z. H. Lee, Materials Sci. Eng., A297, 78(2001) https://doi.org/10.1016/S0921-5093(00)01263-6
  4. J. W. Simmons, Materials Sci. Eng., A207, 159 (1996) https://doi.org/10.1016/0921-5093(95)09991-3
  5. S. Bermhardson, J. Oredsson and C. Martenson, in Proceedings of ASM, Metals Congress, Duplex Austenitic-Ferritic Stainless Steels (St. Louis, Mo, USA,Oct, 1982), ed. R.A. Lula (ASM, Metals Park Ohio, USA,1983) p. 267
  6. S. B. Kim, K. W. Park, and Y. G.Kim, Materials Sci. Eng.,A247, 67 (1996) https://doi.org/10.1016/S0921-5093(98)00473-0
  7. K. L. Irvine, D. T. Liewellyn and F. B. Pickering, JISI, 199, 381 (1994)
  8. J. Wang, P. J. Uggowitzer, R. Magdowski, M. O. Speidel, Scripta Metall. Mater., 40, 123 (1999) https://doi.org/10.1016/S1359-6462(98)00396-0
  9. T. Kudo, T. Tsuge and T. Motoishi, NACE 45, 831 (1989)
  10. K. N. Adhe, V. Kain, K. Madangopal and H. S. Gadiyar,J. Mater. Eng. Performance, 5(4), 500 (1996) https://doi.org/10.1007/BF02648847
  11. D. W. Joo, C, Y. Kang and J. H. Sung, J. Kor. Inst. Met.and Mater., 34, 10 (1996).
  12. D. H. Ye, H. C. Kim, J. H. Lee, Y. S. Yoo, C. Y. Jo, Kor.J. Mater. Res., 12(12), 897 (2002) https://doi.org/10.3740/MRSK.2002.12.12.897
  13. W. Kurz and D. J. Fisher, Fundamentals of Solidification4th ed., p.83, Trans Tech Publications, Switzerland (1998)
  14. V. G. Gavriljuk and H. Berns, High Nitrogen Steels, p. 99,Springer, Germany (1999)
  15. A. Poulalion and R. Botte, in Proceedings of HighNigrogen Steels 88 (Lille, France, May 1988), eds. J Foct and A Hendry (The Institute of Metals, London, England,1989) p. 48