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Multi-scale Cluster Hierarchy for Non-stationary Functional
Signals of Mutual Fund Returns®

7‘Dae—Lyong Kim** - " Uk Jung**

m Abstract m-

Many Applications of scientific research have coupled with functional data signal clustering techniques to discover
novel characteristics that can be used for the diagnoses of several issues. In this article we present an interpretable
multi-scale cluster hierarchy framework for clustering functional data using its multi-aspect frequency information. The
suggested method focuses on how to effectively select transformed features/variables in unsupervised manner so that
finally reduce the data dimension and achieve the multi-purposed clustering. Specially, we apply our suggested method
to mutual fund returns and make superior-performing funds group based on different aspects such as global patterns,
seasonal variations, levels of noise, and their combinations. To promise our method producing a quality cluster hierarchy,
we give some empirical results under the simulation study and a set of real life data. This research will contribute
to financial market analysis and flexibly fit to other research fields with clustering purposes.

Keywords : Mutual Fund Returns, Unsupervised Clustering, Non-stationary Functional Data,
Wavelet, Multi-resolution Analysis
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1. Introduction

The research motivation is from mutual fund re-
turns which is one of financial observations from
the real market. On the financial view points, the
trends of return and risk of mutual fund are very
important to evaluate fund performance and to pre-
dict future performance. Mutual funds with the
trend of high retumn and low risk are treated as su-
perior funds. Therefore, financial researchers and
performance evaluators of real market continuously
try to create several groups of mutual funds to find
superior performing funds. It is, however, not an
easy task to cluster mutual funds under traditional
clustering techniques because the observed mutual
fund returns are time-serial high-dimensional
observations. For example, <Figure 1> represents
a set of twenty nine mutual fund monthly returns
during 10-year time period.
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{Figure 1> Mutual Fund Returns in original time
domain ; The number of funds=29 ;
Length of time=120

Due to the complexity of analyzing high-dimen-
sional signals, most researcher often only use very
simple and basic descriptive statistics to character-
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ize the signals and perform monitoring studies in
industrial practice. For example, the maximum
magnitude and the average value of the signal are
the most commonly used statistics [7]. In these
methods, a large portion of the information con—
tained in the signals is not fully explored. Therefore,
monitoring systems based on these simple statistics
often suffer from high false-alarm rates and/or poor
detection rates for various types of problematic
conditions.

A solution to overcome this type of problems is
to identify internal structure in the data and to use
the corresponding prior knowledge to simplify data
analysis. A very general internal structure model
can be obtained by assuming that a high dimen-
sional vector is in fact a discretized function. This
model covers for instance time series, spectrometric
data, etc. Functional Data Analysis (FDA) is an ex-
tension of traditional data analysis methods to this
kind of functional data[20]. In FDA, each individual
is characterized by one or more real valued func-
tions, rather than by a vector of R*.

For the clustering of a high-dimensional dataset,
the first step is often to reduce the data dimension.
Several dimension reduction techniques have been
developed in recent years including those of Carre-
ira-Perpinan[4]. As reviewed by Jeong et al. [12],
however, there are limited studies dealing with the
analysis of high-dimensional functional data. In
dealing with complicated data patterns, a priori
knowledge is commonly used to guide data preser—
vation or feature extraction methods for selecting
representative data in smaller size for subsequent
analyses [13]. When a priori knowledge is limited,
many studies have used wavelet-based data denoi-
sing techniques [b] for data reduction purposes.
Jung et al. [14] proposed a vertical-energy thresh-
olding (VET) procedure for locating representative
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wavelet coefficients in order to reconstruct multiple
data curves effectively and efficiently. However,
these are not for unsupervised clustering which can
bring interpretable cluster hierarchy. In other data
dimension reduction methods, such as principal
component analysis and the self organizing map
method, the feature selection techniques focus more
on the faithful representation of the original data,
instead of clustering [6]. Jung et al. [15] proposed
a vertical group-wise threshold (VGWT) proce-
dure for the reduction of multiple high dimensional
functional data containing the cluster membership
information. Although it was successful to reduce
the dimensionality and enhance the cluster separa-
bility, it requires a priori knowledge of class in-
formation, which leads to supervised learning sche-
me. There is an extensive literature on variable se-
lection in multiple regression and supervised clas-
sification [8]. However, few results have been pre-
sented on feature selection in unsupervised cluster-
ing analysis of functional data signals.
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{Figure 2> Signal Components, 1 <t < 256

For more detailed explanations of clustering prob-
lem on financial observations, some simulated sig-
nals were generated as follows. Most financial re-
searchers and performance evaluators in real mar-

ket generally assume that mutual funds returns
may have internal trends which are interpretable
as global patterns, seasonal variations, noise and
so on. Therefore, without loss of financial general-
ity, we may generate four simulated internal com-
ponents of financial signals. <Figure 2> (a) and
<Figure 2> (b) represent two different global pat-
terns (f,®)and f,(t), respectively). <Figure 2>(c)
is for a sample of seasonal variations (s(¢)) and
<Figure 2>(d) for a sample of noise (n(z)). All the
components have 256 time positions (1 <t < 256).
Using these four components, eight signals were
generated as f,(t) =£,(t), f,)=£,@), £.)=F&)
+s(t), f,(0)=f()+st), £,() = £, (&) +nt), ;) =
L) +n@), £,@)=f)+s@)+n), and f,{) =
F2(#)+s(t)+n(t). The plot forms of simulated sta-
tionary and non-stationary financial signals are
shown in <Figure 3> (a), (b), (c), (d), (&), (), (g),
and (h), for f,(t), i=abc de f, g, and h, respec—
tively.
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{Figure 3 Simulated signals, 1 <t < 256

With these simulated stationary and non-sta-
tionary financial signals, we may consider to cluster
for making objected groups using the traditional
clustering technique. <Figure 4> (a) shows a set
of eight simulated signals which were shown in-
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<{Figure 4> First two principal cdmponents of
eight simulated signals in original
time domain

dividually in <Figure 3>, In <Figure 4> (b), the
visual representation of signal locations in first two
principal components in original time domain is
shown. It appears that there seem exist two distinct
groups {a,c,e,g} and {b,d,f,h} (in more detailed
aspect, four groups {a,e}, {b.h},{c g}, and {4, A}).
However, if we cluster to two or four groups based
on its empirical appearance, we may loose some in—
terpretable internal information. In other words, we
do not know yet what interpretable reason bring
the result of separation. Until we plot those grouped
signals individually again, it just appears not the
financially interpretable difference among several
signals, but the dissimilarity among several signals
in first two principal component space under math-
ematical perspectives. Therefore, we focus how ef-
fectively we can separate these signals to distinct
groups in terms of a certain aspect of interest such
as top-down hierarchy of several variation support.
By the reason above, to create objected groﬁps ba-
sed on its non-stationary functional signals, we
propose a multi-scale cluster hierarchy framework
using its multi-aspect frequency information.
The suggested method is a four step procedure.
At the first step, the functional data signals are

modeled as wavelet structure to take advantage of
multi-resolution analysis. It brings us the manage-
ability of multiple sets of variables that can be used
for different purposes of clustering and better un—
derstanding of cluster hierarchy structure. In the
second step, Principal Component Analysis (PCA)
is used for each resolution to find a major direction
of different aspect of signal variations and to obtain
visual representation of clusters. Hence, the dimen-
sion of the problem is significantly reduced. In the
third step, a clustering algorithm is applied to the
selected principal components to group the func-
tional data signals. Finally, based on several aspects
of clustering using multi-resolution analysis, we
generate the cluster hierarchy which is interpre-
table. This suggested technique can automatically
find the clusters in a set of functional data signals
in an unsupervised manner. It is different from
well-known hierarchical clustering generating den—
drogram in the sense that the multi-scale (resolu-
tion) cluster hierarchy will give us additive mean-
ing of cluster levels, not simply the meaning of dis—
tances among signals. To promise our framework
producing a quality cluster hierarchy, we give some
empirical results under the simulation study and a
set of real life data. This research will contribute
to financial market analysis and flexibly fit to other
related research fields with clustering purposes.
"The proposed technique may also be considered as
an important data pre—processing technique for da-
ta dimension reduction in the development of mon-
itoring and diagnostic systems using functional da-
ta signals.

This article is organized as follows. In Section
2, we review the background of wavelet. In Section
3, we introduce our proposed method. Section 4
presents both a numerical simulation and a case
study of mutual fund returns from real~word finan-
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cial market to illustrate the effectiveness of the
suggested method. The conclusions and future re-
searches are presented in Section 5.

2. Brief Review of Wavelet
Transformation

In order to introduce the new clustering method
which guarantee interpretability of different aspect
of clusters for non-stationary functional data, the
Wavelet transformation is briefly reviewed below.

A wavelet is a function v (¢) L (R) with the fol-
lowing basic properties

= 2 =
/Rw(t)dt 0 and wa @)dt =1

where Z*(R) is the space of square integrable re-
al functions defined on the real line R. Wavelets
can be to create a family of time-frequency atoms,
¥, (t) =s"%p(st—u), via the dilation factor g and
the translation «. We also require a scaling function
¢(t) € L*(R) that satisfies

fqﬁ(t)dt;éo and ‘/¢2(t)dt¢l.
yid R

Selecting the scaling and wavelet functions as
{6, =229 25t— k) kEZ), {u,, (1) = 229 (27
t—k);j>= L, k= Z}, respectively, on can form an
orthonormal basis to represent a signal function
f®)eL*(R) as follows.

f) = k;ZCL,k¢’L.k )+ E E dj,kwj,k(t)

j=LkeZ

where Z denote the set of all integers {0, +1, £2,
-~} and the coefficients ¢, = [ f(t)g, (1) are
R

considered to be the coarser-level coefficients cha-
racterizing smoother data patterns, and d, = f f
R

{t)v,,(t)dt are viewed as the finer-level coeffi-

cients describing (local) details of data patterns. In
practice, the following finite version of the wavelet

series approximation is used :
- J
F& =3 cpgbre®+ Y 3 dw, () (D)
kez i=LkEZ

where J > L and L correspond to the coarsest reso—
lution level. Consider a sequence of data y= (y(t,),
-, y(t,)) taken from f(¢) or obtained as a realiza-
tion of y(t)= f(t)+e, at equally spaced discrete time
points where ¢,’s are independent and identically
distributed (i.i.d.) noises. The superscript 7' repre-
sents the transpose operator. The discrete wavelet
transform (DWT) of y is defined as

d=Wy

where W is the orthonormal N x~N DWT-matrix.
From (1), we can write d=(c,d;,d, ., d;), wWhere

cL = (CL,ov“'vCL,gH), dL = (dL,()7”" dML-l), dJ =
(dyge-rsdy pm
the inverse DWT, the ¥ x 1 vector y of the original
signal curve can be reconstructed as y= WTd. The

process of transforming a data set via the DWT

) are called scales or subband. Using

closely resembles the process of computing the Fast
Fourier Transformation (FFT) of that data set. By
applying the DWT to the data y,’s, d=W,, we ob-
tain the following model in the wavelet domain :

d =0, 0, for j= Lo k=012 and ¢
=0, x+nx for j=L--J, k=01,--2""" where
J=1log,N—1, The model can be represented in the

vector format as follows.
d=0+n

where d,0 and 7 represent the collection of all co-
efficients, parameters and errors, respectively. Sin—
ce Wis an orthonormal transform, »,,'s are still
1id. Mo,0?) [25].
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3. Proposed clustering
method

3.1 Multi-resolution Analysis

In this subsection, we introduce the subject of
multi-resolution analysis. Those who need more for
proofs and discussions is referred to Mallat [19].
A function or signal can be viewed as composed
of a smooth background and fluctuations or details
on top of it. The distinction between the smooth
part and the details is determined by the resolution,
that is, by the scale below which the details of a
signal cannot be discerned. At a given resolution,
a signal is approximated by ignoring all fluctuations
below that scale. We can imagine progressively in-
creasing the resolution ; at each stage of the in-
crease in resolution finer details are added to the
coarser description, providing a successively better
approximation to the signal. Eventually when the
resolution goes to infinity, we recover the exact signal.

The above intuitive description can be made more

precise as follows. We label the resolution level by
an integer j. The scale associated with the level
j=0 is set to, say, unity and that with the level
7 is 1/27. Let us consider a function f(¢).
At resolution level j it is approximated by f,(t).
At the next level of resolution j+1, the details at
that level denoted by d,(t) are included and we have
the approximation to f(¢) at the new resolution lev-
€l, f;,,(t)=£;(t)+d;(t). The original function f(t)
is recovered when we let the resolution go to in-
finity

£O =10+ 34,0)

The word multi-resolution refers to the simulta-
neous presence of different resolutions. The above

equation represents one way of decomposing the
function f(¢) into a smooth part plus details. Sirmi—
larly, we can view the space of functions that are
square integrable, Z2(R), as composed of a sequence
of subspaces W, and V; and the details 4, (¢) are

in .
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<{Figure 5> An example of reconstruction of
Multi-resolution decomposition

In <Figure 5>, the details at several level ks,
d,(t), are presented, In this article, we regard the
approximation signal(such as <Figure 5> (b)) at
level L as containing the intrinsic nature of global
pattern in a signal, the low level detail signals (such
as <Figure 5> (c) and <Figure 5> (d)) as the im-
pact of seasonal variations at different support size,
and the high level detail signals (such as <Figure
5> {e) and <Figure 5> (f)) as the impact of noise
at different support size. Our proposed clustering
method utilizes this multi-resolution property of
wavelet in order to achieve the interpretable differ—
ences among functional signal clusters. That is,
wavelet coefficients in several resolution levels in
hierarchy structure will be used for clustering. This
brings us to the subject of this subsection, mul-
ti-resolution analysis.
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3.2. Cluster Hierarchy using Multi-resolution
Principal components

Our wavelet coefficients obtained from multi-re—
solution analysis need to be clustered. We simplify
the notation d= (d,, -~ dj,--d;) where d;=(d,g, -

d;,:,), instead of using d=(cy,dp,dy iy, d,)

e

without confusing. Since the approximation signals
may still have a high dimensionality of 2*—1 and
they will suffer the curse of dimensionality (ie., the
sample size needed to estimate the density function
is proportional to the exponential of the number of
dimensions [4], it is possibly very difficult to apply
directly clustering algorithms to the raw dataset.
In this paper, PCA is used to reduce the dimension
of the dataset as well as the visual representation
of clusters. PCA linearly transforms the raw data-
set into a new set of variables, called Principal
Components (PCs).

Since, at each resolution level j, the scheme to
project signals to the PCs is identical, we simplify
d; =d. Given a dataset D*”** with p variables (p=
2Y—1) and M sample signals (.e. D=(d!,-d")T,
where d' =(d/,-d}), d for a pth wavelet coeffi-
cient at a certain resolution level of signal ¢) and
S is the pxp sample covariance matrix with ei-

genvalue-eigenvector pairs (A.e,),(Aye,),+(Ae,),

the kth principal component is given by :

hy=efd=e, d, +e,d, + - €xp

P’

k=1-p

where A =), ==X >0 and d is a row vector
of wavelet coefficients with size p of one sample
signal. Also, the sample variance of h, is A, k=1
-+ p, and the sample covariance between h,, and k.,
is zero for k=¥ . In addition, the total sample var-
iance is trace(S) that is equal to A +2,+- +2A,
where trace(S) is the summation of the diagonal

elements of $. The sample variance explained by
the kth principal component is given by A, /trace(S).

As mentioned in Section 2, the sum of the var-
iances of the first few principle components account
for a large portion of the total variance of approx-
imation signals. Thus, we can characterize each
wavelet coefficient vector of sample signal ¢, d', by
a vector of the first few principle components b, =
(hyy,ooh;) where A z-2 A == A, =0 for the
purpose of clustering. From PCA using approx-
imation signals with first few PCs, we achieve a
faithful representation of clusters disregarding out-
lying behavior of signals with high peaks and noise.
See <Figure 6> (in this plot , p=2) and Section
4 for more explanation (The number that super-
imposed on each dot represents the index of 8 sig—
nals). However, the appropriate number of clusters
and each signal cluster membership information is
still required.

In the problem of obtaining cluster membership
information, there are many clustering methods,
ranging from heuristic approaches such as K-means
[10] and linkage analysis [16] to more formal mod-
el-based procedure [1]. In this paper, K-means
clustering which is one of the simplest unsuper-
vised learning algorithms that solve the well known
clustering problem, will be used. Consider a dataset
composed of M elements in R that contains a ma-
clusters. Let d(h;, h;) denote the dis—
tance between new representations of signals at a

ximum of &,
certain resolution level, b, and by, 14, j = M. Let
us define the encoder G(i) =k, that assigns the ith
observation, h,, to the kth cluster. The K-means
algorithm is one of the most popular iterative de-
scent clustering methods. It is intended for situation
in which all variables are of the quantitative type,
and squared Euclidean distance
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f} (hy;—h)?= b —h, I

is chosen as the dissimilarity measure. Note that
weighted Euclidean distance can be used by re-
defining the h,; values. The within-point scatter
can be written as

1 K
wiG) =53] > in-no?
k=1 6=k ¢(H)=k
K
=) b, —h, II?
k=1GH)=k

where b, is the mean vector associated with the
kth cluster. Thus, the criterion is minimized by as—
signing the A7 observations to the & clusters in
such a way that within each cluster the average
dissimilarity of the observations from the cluster
mean, as defined by the points in that cluster, is
minimized. In all of the clustering methods, the data
are clustered multiple times for various numbers
of clusters. For each value of K1 < K< K, ), let
G, Gy, G, Gy be a set of clusters such that n,
is the number of b, in G,.

Most clustering procedures require one to choose
the number of groups prior to fitting. This is one
of the most difficult problems in cluster analysis.
The earliest cluster number estimation approaches
are based upon measures of within-cluster-homo-
geneity or between-cluster-heterogeneity, e.g.,
Calinski and Harabasz [3], Hartigan [9], Krzano-
wski and Lai[18], and Rousseeuw [21]. In all four
methods, the data are clustered multiple times each
time with a different number of clusters. For each
number of clusters, a statistic measuring the quality
of the clustering is computed. We utilize the ap-
proach suggested by Rousseeuw [21] in this paper.
Rousseeuw introduces new functions to measure
within—cluster-homogeneity and between-cluster-
heterogeneity. For h, @G,

and

1
blh,) =min, . ,— 37 d(h, h;).

LR W=TeN

i

For each k&, the quaﬁty of the clustering is sum-
marized by the silhouette statistic :

The number of cluster is estimated by

argmaX, _, . o Sg

i

That is, to get an idea of how well-separated the
resulting clusters are, we check a silhouette values.
The silhouette value is a measure of how close each
point in one cluster is to points in the neighboring
clusters. This measure ranges from + 1, indicating
points that are very distant from neighboring clus-
ters, through 0, indicating points that are not dis-
tinctly in one cluster or another, to —1, indicating
points that are probably assigned to the wrong
clusters. A good quantitative way to compare the
solutions with several trial numbers of clusters is
to look at the average silhouette values for each
cases.

At this point, we need to address a major draw-
back of K-means algorithm from the fact that the
clustering quality is greatly dependent on the choice
of initial centers, h, ;s SO that K-means algo-
rithm guarantees local, but not necessarily global
optimization. Poor choice hy ..., therefore, can
degrade the quality of clustering solution. In order
to avoid this drawback, our clustering method pro-
poses a sufficient number of repeated center initial-
ization at a certain number of clusters k(1 < k < &),
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In our case studies in Section 4, sixty repetitions
were performed at each k. At each k, hence, the
maximum average sithouette will be used to find
the most appropriate number of clusters. See <Fi-
gure 7> (b) and <Figure 9> (d), <Figure 9> (e),
and <Figure 9> (f) for comparison among several
trials of ks. In the case of intrinsic unity (a single
cluster, in other words, which is not suitable to di-
vide a whole set of data to & clusters, 2 <k < K,
k is a positive integer) a certain threshold of the
maximum average silhouette can be utilized (a thre-
shold 0.7 is used in our case studies). That is, if
a maximum average silhouette value for any trials
of & is less than the threshold, we conclude the sin-
gle cluster is most appropriate. The optimal thresh-
old of maximum average sithouette will be re-
mained as future research.

According to the clustering scheme we discussed
so far, we have multiple cluster memberships which
depend on different resolution levels. Thus, we con-
sider a sequence of cluster index for a certain signal

h; at successive resolution levels ; the cluster in-
dex of a signal h, at any resolution level = is de-
noted by 7 (i). A particular sequence of cluster in-
dex from every resolution levels for a signal h;

is denoted by

1) = {L41) @), Lpay (), Ipgg 1) @)y Loy @}

where L= the coarsest resolution level ; A(Z) =
approximation at level L ; D(I) = details at level
L; D(L—1) = details at level Z—1, and so on.
Based on 1(3), the final cluster encoder

fUG); R R) =k

will assign the sith observation, h;, to the kth
cluster. & is an integer which has a range, 1 < k < K,
where K is the number of different sequences of
I(i)s where ris from R, to R, (A(L) 2R, =z - =
R, >D(1) ; a=b means a is a coarser level than
b). f(I(3); R;R,) is a function of 7(3) to assign the
final cluster index to each signals. In this notation,
it is possible for two different signals h; and b,
(i  j) to belong to different clusters as resolution
level » even though I.(:)=1(;) still holds, due to
the hierarchical structure of clusters. In other words,
they are different branch from same stem if 7-_ (i)
=1._ (j) for any . Thus, we notice the fact that
the interpretation of cluster index I (s) is dependent
of 7._ (i) (let us say, the cluster index in coarser
resolution level) in the sequence 1(;). The examples
of the proposed cluster scheme is in <Table 1> and
<Table 2> in Section 4. More details about both
tables are given in Section 4.

{Table 1) List of Eight Simulated Signals and Cluster Hierarchy Notation Index

Signal i I() fi f2 bi] fa f5
a I =1{1,1111 1 1 1 1 1
b B =2 1111 2 3 3 2 2
c o =11,2211 1 2 2 3 3
d Id=1{22211 2 4 4 4 4
e Iey=1{1,1,1,2 2 1 1 1 5 5
f IPp=121122 2 3 3 6 6
g g =1{1,222 2} 1 2 2 7 7
h IW=122222 2 4 4 8 8

where f, = f(I(i); Ayy; Ayy), fo= FUIG) 5 Ay Do), fs= FUGE); Agys D),y fo= FUD5 Agys D), 5= FUI() 5 A3 Dyy)
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(Table 2) List of twenty-nine mutual fund return
signals and cluster hierarchy notation

index
Signal | AUStEr R 0ycier Tndex
Index i 76y FUH@); Ayys Dyy)
1 ImM=4,1312 3
2 I2={1,1,1,3 3} 1
3 I3)=11,1,3 12 3
4 I9={1,1312 3
5 15=1,11,3 3 1
6 I6)={1, 1,3 1, 2} 3
7 IMm=4,1,312 3
8 I®={,1,22 1} 2
9 19=4,1,22 1} 2
10 10)={1, 1,3 1, 2} 3
1 I1)={1,1,31, 2 3
12 112)={1,1, 22, 1} 2
13 3=1{,1,22 1 2
14 149={,1,1 3 3 1
15 105 =41, 1,2, 2,1} 2
16 106)={1, 1, 3, 1, 2} 3
17 1an=4,1,2 2, 1} 2
18 1a8)=11,1, 1, 3, 3} 1
19 09={1, 1,312} 3
20 120=4,1,2 2 1} 2
21 2n=4,1,1,3 3} 1
22 I22)=(1,1,2 2 1} 2
23 I23)=-{1,1,22 1} 2
24 24={,1,1,3 3 1
25 I25)=1{1,1, 1,3 3} 1
26 126)=11, 1,2 2 1} 2
27 I2Nn=A41,1,1 3 3} 1
28 128=11,1,22 1} 2
29 I29=41,1,3 1, 2} 3
where 1(i) = {I, (&), 1y, (i), Iy, (i), Ip, (i), Iy (D)}

4. Case studies

4.1 Simulation Data with Several Differences

In this section we apply the proposed clustering
method to a set of simulated signals in <Figure 4>
(a). For comparison purpose, the result of applying
PCA directly to original time domain was plotted
in <Figure 4> (h). It was problematic to interpret
as mentioned before in Section 1. In order to avoid
this drawback, wavelet transformation is applied to

the simulated signals. In this case, the simulated
signals were decomposed at level 6 using Symmlet4
as a type of wavelets. Then the approximation was
performed at level 4 (Z=4) which contains details
at level 6 and 5 in order to avoid over-smoothing.
Then PCA was applied to the each approxima-
tion/details signals at each level and the result is
shown in <Figure 6>.

Using those PC plots for K-means clustering
with the number of cluster = 2 at each resolution
level, the sequence of cluster index, 7(:), and the
final cluster index function, f(7(:); R,; R,), are list-
ed in <Table 1>. According to the I(i)s, the two
clusters at A4(4) (which represents the global pat-
tern) are {a, ¢, e, g} and {b, d, £, h} in accordance
with our intention during the simulation of signal
generation. Also, the two clusters at D(4) and D(3)
(which represents the different support size of sea-
sonal variations) are {a, b, e, f} and {c, d, g, h} and
the two clusters at D(2) and D(1) (which repre-
sents the different support size of noise) are {a, b,
¢, d} and {e, f g, h}. All the results are identical
with the intrinsic difference from the signal gene—
rations. Also, the results of final clustering in re-
gard of hierarchy structure are obtained by f(Z(i);
R;R,) (in the table, f,,f,.f;. [, f;). f, divided a
set of clusters into two groups (cluster index 1 and
2) in terms of global pattern alone, f, and f, into
four groups in terms of global pattern and seasonal
variations, and f, and f, into eight groups in terms
of global pattern, seasonal variations, and noise.

4.2 Real Life Data of Mutual Fund Return

As we mention in Section 1, financial researchers
and evaluators of real financial market continuously
try to group funds to find superior performing funds
for predicting future performance. To make ob-
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(Figure 6y First two principal components of simulated signals in multi-resolution wavelet domain

jected groups based on its non-stationary func-
tional signals, we apply our multi-scale cluster hi-
erarchy framework under its multi-aspect fre-
quency information. In this part, we show the eval-
uation process for actual mutual fund returns using
our suggested method. To promise our method to
produce a quality cluster hierarchy, we divided the
most actively traded 541 firms to several risk (var—
iance) categories by percentile grouping and ran-
domly chose total 29 firms in three categories. That
is, each sample signal consists of 120 monthly rates
of return data from June 1988 to May 1998 on each
of the twenty—nine firms in the mutual funds data-
bases which is maintained by Alexander Steels’
Mutual Fund Expert. The original data of this data—
base is provided by Standard and Poors Mircopal.
<Figure 1> shows signals of mutual fund return

ratio from twenty nine mutual funds. In this case,
the number of signals (M) is 29 and the dimension
(™) of each signal is 120.

<Figure 7> shows the results of direct PCA us-
ing first two PCs in the original time domain.
Although the first two PC plot in <Figure 7> (a)
and the average silhouette value plot in <Figure 7>
(b) identically suggest three distinct clusters, the
interpretation of the source of major difference is
vague. Thus, we applied our proposed method to
these signals as we did in the previous simulation
study.

From <Figure 8>, we may notice the difference
among possible clusters may exist in the seasonal
variations and noise(from <Figure 8> (c), <Figure
8> (d), <Figure 8> (e)) rather than the global pat-
terns (from <Figure 8> (a)). In order to assure
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<Figure 8> First two principal components in multi-resolution in wavelet domain

where the major differences exist among the possi-
ble clusters, we analyzed the average silhouette
values like in <Figure 9>. From <Figure 9> (d)
and <Figure 9> (e), the maximum of average sil-
houette values (05971 and 0.6262, respectively) are
less than our thresholding value 0.7 so that we con-
clude there is an intrinsic unity in 4(4) and D(4).
In <Figure 9> (f), the maximum of average silhou-
ette values (0.7273) is greater than the thresholding

value 0.7 so that we conclude there are three in-
trinsic clusters in D(3). In this way, we found all
cluster membership information using K-means al-
gorithm and the result is shown in <Table 2>.
Finally, based on the final cluster index, we can
cluster twenty nine mutual funds by three perform-
ance groups on the size of variations and noise
which are plotted the segmented signals in <Figure
10>. That is, it shows the global pattern is not the
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major difference among the clusters, but the size

of variations and noise.

Currently, in the real financial market the set of
superior performing mutual funds is typically built
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from percentile~based performance classification
method [17] such as “risk-adjusted 5-star rating”
which is produced by Morningstar [2). This is a
three stage evaluation procedure. In the first stage,
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Table 3) Average Values of Performance Measures of Each Ciustering Group

# of Funds (a)Sharpe (b)Treynor (c)Return (d)Risk(SD) (e)Beta
Groupl 9 0.750 6.339 1435 6.063 0931
Group?2 11 1563 2104 1416 3609 0.908
Group3 10 1486 20624 0803 1671 0451
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<Figure 11> Investment risk and return plot ; The symbol ‘7 indicates a signal with FUG); Ay D)) =1,
“ with £(2G); Ay §D(1)) =2, and ‘+’ with f(7(:); Ayys D(l)) =3.

historical return and risk are combined into a single
numeric performance value by a performance mea-
sure such as Sharpe [22], Treynor [24] or Jensen’s
measure [11]. In the second stage, the evaluated nu-
meric risk-adjusted performance value is converted
to an ordinal performance ranking for indicating the
relative performance position of each mutual fund.
In the final stage, mutual funds were clustered ba-
sed on preset number of performance groups and
preset percentile as ranking criteria [23].

<Table 3> shows average values of performance
measures of each clustering groups that are from
our suggested framework under its multi-aspect
frequency information. Because there is statistically
no difference of (a) Sharpe or (b) Treynor perform-
ance measure between Group2 and Group3, total

twenty nine mutual funds are clustered into two
groups under the risk-adjusted performance mea-
sures. One group is Groupl and the other group is
Group2 and Group3 by the percentile-based per-
formance classification method which is typically
used in the real market. However, considering fi-
nancial risk such as (e) beta and (d) standard devi-
ation, we can see that mutual funds in Group?2 have
more systematic and overall risk performance than
those in Group3. Therefore, for finding superior
performing mutual funds, risk-averse investors
may have more information on the three group
clustering than on the two group clustering. It is
presented more clearly in <Figure 11> which is risk
and return plot.

In the suggested multi-scale cluster hierarchy



framework, the global pattern and the size of varia-
tions are treated as trend of return and risk, respec-
tively. According to the our suggested method, we
can evaluate more financially reasonable superior
performing mutual funds based on the trend of re~
turn, risk, and may predict mutual funds future
performance.

5. Conclusion and Future
Research

Since mutual funds with the trend of high return
and low risk are treated as superior funds, financial
researchers and evaluators of real market need to
cluster mutual funds to find superior performing
funds. In this article, we apply our suggested fra-
mework to mutual fund returns and create superior
performing fund group based on its non-stationary
functional signals. We present an interpretable mul-
ti-scale cluster hierarchy framework for clustering
functional data such as mutual fund returns under
its multi-aspect frequency information. That is, as-
suming that mutual funds returns are composed of
several internal factors, our suggested framework
is to construct a cluster hierarchy that satisfies in-
terpretability of different aspect of clusters, such as
global patterns, seasonal variations, noise and so
on. It is different from well-known hierarchical clu-
stering generating dendrogram in the sense that the
multi-scale (resolution) cluster hierarchy will give
us additive meaning of cluster levels, not simply
the meaning of distances among signals.

Based on the positive empirical results obtained
from our study, the proposed method appears to
have good potential in many real-world functional
data analysis such as financial market analysis,
econometric modeling, machine health monitoring,
and bio-informatics applications.
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Some future work would be to make the follow—
ing advanced applications of this suggested clus—
tering technique. First, we need to further study the
optimal threshold of maximum average silhouette
value to conclude whether there is a single cluster
(intrinsic unity). Second, to explore a more rigorous
framework to find the cluster hierarchy, we would
better study our contents under the statistical dis-
tribution properties. If our suggested framework is
valuable under the statistical distribution hypoth-
esis, it will be more powerful clustering technique.
Also, its statistical analysis will have a large con-
tribution to the statistical data mining field.
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