DOI QR코드

DOI QR Code

메탄-수소 대향류확산화염에서 H2와 H의 선호확산을 통한 화학적 효과에 관한 연구

A Study on Chemical Effecta Through Preferential Diffusion of H2 and H in CH4-H2 Counterflow Diffusion Flames

  • 박정 (부경대학교 기계공학부) ;
  • 권오붕 (부경대학교 기계공학부) ;
  • 이의주 (부경대학교 안전공학부) ;
  • 윤진한 (한국기계연구원 청정환경기계연구센터) ;
  • 길상인 (한국기계연구원 청정환경기계연구센터)
  • 발행 : 2007.12.01

초록

Numerical study on preferential diffusion effects in flame structure in $CH_4-H_2$ diffusion flames is conducted with detailed chemistry. Comparison of flame structures with mixture-averaged species diffusion and suppression of the diffusivities of $H_2$ and H was made. Discernible differences in flame structures are displayed with three species diffusion models. The behaviors of maximum flame temperatures with those species diffusion models are not explained by scalar dissipation rate but by the nature of chemical kinetics. It is seen that the modifcation of flame structure is mainly due to the preferential diffusion of H2 and thereby the nature of chemical kinetics. It is also found that the behaviors of major species with the three species diffusion models are addressed to the nature of chemical kinetics, and this is evident by examining importantly contributing reaction steps to the production and destruction of those chemical species.

키워드

참고문헌

  1. Yu, G., Law, C. K. and Wu, C. K., 1986, 'Laminar Flame Speeds of Hydrocarbon+Air Mixtures with Hydrogen Addition,' Combust. Flame Vol 63, pp. 339-347 https://doi.org/10.1016/0010-2180(86)90003-9
  2. Yamaoka, I. and Tsuji, H., 1992, 'An Anomalous Behavior of Methane-air and Methane-hydrogen-air Flames with Nitrogen in a Stagnation Flow,' Proc. Combust. Inst., Vol. 24, pp. 145-512
  3. Bade Shresha, S. O. and Karim, G. A., 1999, 'Hydrogen as an Additive to Methane for Spark Ignition Engine Applications,' Int. J. Hydrogen Energy, Vol. 24, pp. 577-586 https://doi.org/10.1016/S0360-3199(98)00103-7
  4. Bauer, C. G. and Forest, T. W., 2001, 'Effect of Hydrogen Addition on the Performance of Methane-fueled Vehicles. Part I: Effect on SI Engine Performance,' Int. J. Hydrogen Energy, Vol. 26, pp. 55-70 https://doi.org/10.1016/S0360-3199(00)00067-7
  5. Ren, J-Y., Qin, W., Egolfopoulos, F. N. and Tsotsis, T. T., 2001, 'Methane Reforming and its Potential Effect on the Efficiency and Pollutant Emissions of Lean Methane-air Comnbustion,' Chem. Eng. Sci., Vol. 56, pp. 1541-1549 https://doi.org/10.1016/S0009-2509(00)00381-X
  6. Ren, J-Y., Qin, W., Egolfopoulos, F. N. and Tsotsis, T. T., 2001, 'Strain-rate Effects on Hydrogen-enriched Lean Premixed Combustion,' Combust. Flame, Vol. 124, pp. 717-20 https://doi.org/10.1016/S0010-2180(00)00205-4
  7. Schefer, R. W., Wicksall, M., and Agrawal, A. K., 2002, 'Combustion of Hydrogen-enriched Methane in a Premixed Swirl-stabilized Burner,' Proc. Combust. Inst., Vol. 29, pp. 843-852 https://doi.org/10.1016/S1540-7489(02)80108-0
  8. Halter, F., Chauveau, C., Djebaili-Chaumeix, N., and Gokalp, I., 2005, 'Characterization of the Effects of Pressure and Hydrogen Concentration on Laminar Burning Velocities of Methane-hydrogen-air Mixtiures,' Proc. Combust. Inst., Vol. 30, pp. 201-208 https://doi.org/10.1016/j.proci.2004.08.195
  9. Dagaut, P. and Nicolle, A., 2005, 'Experimental and Setailed Kinetic Modeling of Hydrogen-enriched Natural Gas Blend Oxidation Over Extended Temperature and Equivalence Ratio Ranges,' Proc. Combust. Inst., Vol. 30, pp. 2631-2638 https://doi.org/10.1016/j.proci.2004.07.030
  10. Di Sarli, V. and Di Benedetto, A., 2007, 'Laminar Burning Velocity of Hydrogen-methane/Air Premixed Flames,' Int. J. Hydrogen Energy, Vol. 32, pp. 637-646 https://doi.org/10.1016/j.ijhydene.2006.05.016
  11. Law, C. K. and Kwon, O. C., 2004,.'Effects of Hydrocarbon Substitution on Atmospheric Hydrogen-air Flame Propagation,' Int. J. Hydrogen Energy, Vol. 29, pp. 867-879 https://doi.org/10.1016/j.ijhydene.2003.09.012
  12. Park, J., Keel, S. I., Yun, J. H. and Kim, T. K., 2007, 'Effects of Addition of Electrolysis Products in Methane-air Diffusion Flames,' Int. J. Hydrogen Energy, to be Appeared
  13. Liu, F., Guo, H., Smallwood, G. J. and Gulder, O., 2002, 'Numerical Study of the Superadiabatic Flame Temperature Phenomenon in Hydrocarbon Premixed Flames,' Proc. Combust. Inst., Vol. 29: pp. 1543-1550 https://doi.org/10.1016/S1540-7489(02)80189-4
  14. Ruf, B., Behrendt, F., Deutchmann, O., Kleditzsch, S. and Warnatz, J., 2000, 'Modeling of Chemical Deposition of Diamond Films from Acetylene-oxygen Flames,' Proc. Combust. Inst. Vol. 28, pp. 1455-1461
  15. Liu, F. and Gulder, O., 2005, 'Effects of H2and H Preferential Diffusion and Unity Lewis Number on Superadiabatic Flame Temperatures in Rich Premixed Methane Flames,' Combust. Flame Vol. 143, pp. 264-281 https://doi.org/10.1016/j.combustflame.2005.03.018
  16. Zamashchikov, V. V., Namyatov, I. G., Bunev, V. A. and Babkin V. S., 2004, 'On the Nature of Superadiabatic Emperatures in Premixed Rich Hydrocarbon Flames,' Combust. Explosion Shock Waves, Vol. 40: 32-5 https://doi.org/10.1023/B:CESW.0000013665.43183.10
  17. Drake, M. C. and Blint, R. J., 1988, 'Structure of Laminar Opposed-flow Diffusion Flames with CO/H2/N2 Fuel,' Combust. Sci. Tech., Vol. 61, pp. 187-224 https://doi.org/10.1080/00102208808915763
  18. Wang, P., Hu, S. and Pitz, R., 2007, 'Numerical Investigation of the Curvature Effects on Diffusion Flames,' Proc. Combust. Inst., Vol. 31, pp. 989-996 https://doi.org/10.1016/j.proci.2006.07.223
  19. Takagi, T., Yoshikawa, Y., Komiyama, M. and Kinoshita, S., 1996, 'Studies on Strained Non-premixed Flames Affected by Flame Curvature and Preferential Diffusion,' Proc. Combust. Inst., Vol. 26, pp. 1103-1110
  20. Lutz, A. E., Kee, R. J., Grcar, J. F. and Rupley, F. M., 1997, 'A Fortran Program for Computing Opposed-flow Diffusion Flames,' Sandia National Laboratories Report, SAND 96-8243
  21. Kee, R. J., Rupley, F. M., and Miller, J. A., 1989, 'Chemkin II: a Fortran Chemical Kinetics Package for Analysis of Gas Phase Chemical Kinetics,' Sandia National Laboratories Report, SAND 89-8009B
  22. Kee, R. J., Dixon-Lewis, G., Warnatz, J., Coltrin, M. E. and Miller, J. A., 1994, 'A Fortran Computer Code Package for the Evaluation of Gas-phase Multi-component Transport,' Sandia National Laboratories Report, SAND86-8246
  23. Ju, Y., Guo, H., Maruta, K. and Liu, F., 1997, 'On the Extinction Limit and Flammabiliy Limit Non-adiabatic Stretched Methane-air Premixed Flames,' J. Fluid Mech., Vol. 342, pp. 315-334 https://doi.org/10.1017/S0022112097005636
  24. Chellian, H. K., Law, C. K., Ueda, T., Smooke, M. D. and Williams, F. A., 1990, 'An Experimental and Theoretical Investigation of the Dilution, Pressure and Flow-field Effects on the Extinction Condition of Methane-air-nitrogen Diffusion Flames,' Proc. Combust. Inst., Vol. 23, p. 503
  25. Smith, G. P., Golden, D. M., Frenklach, N. W., Eiteneer, M. B., Goldenberg, M., Bowman, C. T., Hanson, R. K., Dong, S., Gardiner, W. C., Lissianski, -V. V. Jr. and Qin, Z. http://www.me. berkeley.edu/gri_mech/
  26. Westbrook, C. K. and Dryer, F. L., 1984, 'Chemical Kinetic Modeling of Hydrocarbon Combustion,' Prog. Energy Combust. Sci., Vol. 10, pp. 1-57 https://doi.org/10.1016/0360-1285(84)90118-7
  27. Bilger, R. W., 1988, 'The Structure of Turbulent Nonpremixed Flames,' Proc. Combust. Inst., Vol. 22, pp. 475-488