DOI QR코드

DOI QR Code

마이크로 사이클론 연소기의 혼합 및 유동특성에 관한 수치해석 연구

Numerical Simulation of the Mixing and Flow Characteristics in a Micro Cyclone Combustor

  • 최병일 (한국기계연구원, 에너지기계연구센터) ;
  • 한용식 (한국기계연구원, 에너지기계연구센터) ;
  • 김명배 (한국기계연구원, 에너지기계연구센터) ;
  • 황철홍 (인하대학교, 기계공학부) ;
  • 오창보 (부경대학교, 안전공학부)
  • 발행 : 2007.12.01

초록

A micro cyclone combustor was developed to be used as a heat source of thermoelectric power generator (TPG). The cyclone combustor was designed so that fuel and air were supplied to the combustion chamber separately. The mixing and flow characteristics in the combustor were investigated numerically. The global equivalence ratio ($\Phi$), defined using the fuel and air flow rates, was introduced to examine the flow features of the combustor. The mixing of fuel and air inside the combustor could be well understood using the fuel concentration distribution. It was found that the weak recirculating zone was formed upper the fuel-supplying tube in case of ${\Phi}$<1.0. In addition, it was found that small regions that have a negative axial velocity exist near the fuel injection ports. It is assumed that these negative axial velocity regions can stabilize a flame inside the micro cyclone combustor.

키워드

참고문헌

  1. Fernandez-Pello, A. C., 2002, 'Micro-Power Generation Using Combustion : Issues and Approaches,' Proc. Combust. Inst., Vol. 29, pp. 883-899 https://doi.org/10.1016/S1540-7489(02)80113-4
  2. Kim, N. I., Kato, S. K., Kataoka, T, Yokomori, T., Maruyama, S., Fujimori, T. and Maruta, K., 2005, 'Flame Stabilization and Emission of Small Swiss-roll Combustors as Heters,' Combust. Flame, Vol. 141, pp. 229-240 https://doi.org/10.1016/j.combustflame.2005.01.006
  3. Ahn, J., Eastwood, C., Sitzki, L. and Ronney, P. D., 2005, 'Gas-phase and Catalytic Combustion in Heat- Recirculating Burners,' Proc. Combust. Inst., Vol. 30, pp. 2463-2472 https://doi.org/10.1016/j.proci.2004.08.265
  4. Suzuki, Y., Hori Y. and Kasagi, N., 2003, 'Micro Catalytic Combustor with Tailored Pt/A1_{2}O_{3} Films,' PowerMEMS 2003, pp. 23-26
  5. Wu, M., Wang, Y., Yang, V. and Yetter, R. A., 2007, 'Combustion in Meso-scale Vortex Combustor,' Proc. Combust. Inst., Vol. 31, pp. 3235-3242 https://doi.org/10.1016/j.proci.2006.08.114
  6. Norton, D. G. and Vlachos, D. G., 2004, 'A CFD Study of Propane/air Microflame Stability,' Combust. Flame, Vol. 138, pp. 97-107 https://doi.org/10.1016/j.combustflame.2004.04.004
  7. Kim, N. I., Kataoka, T, Maruyama, S. and Maruta, K, 2005, 'Flammable Limits of Stationary Flames in Tubes at Low Pressure,' Combust. Flame, Vol. 141, pp. 78-88 https://doi.org/10.1016/j.combustflame.2004.12.011
  8. Cheng, T. S., Chao, Y.-C., Wu, C.-Y., Li, Y.-H., Nakamura, Y., Lee, K.-Y., Yuan, T. and Leu, T. S., 2005, 'Experimental and Numerical Investigation of Microscale Hydrogen Diffusion Flames,' Proc. Combust. Inst., Vol. 30, pp. 2489-2497 https://doi.org/10.1016/j.proci.2004.07.025
  9. Posthill, J. et al., 2005, Portable Power Sources Using Combustion of Butane and Thermoelectrics, 2005 Int'I. Conf. on Thermoelectrics, 517-520 https://doi.org/10.1109/ICT.2005.1520000
  10. FLUENT, FLUENT 6.0 User Guide, Lebanon, N. H., (2002)
  11. ICEM CFD Engineering, ICEM-CFD Tutorial Manual: Meshing Modules, Version 10.0, (2005)
  12. Patankar, S. V., 1980, 'Numerical Heat Transfer and Fluid Flow,'McGraw-hill