DOI QR코드

DOI QR Code

THE CHANGE OF THE CONFIGURATION OF HYDROXYAPATITE CRYSTALS IN ENAMEL BY CHANGES OF PH AND DEGREE OF SATURATION OF LACTIC ACID BUFFER SOLUTION

유산 완충용액의 pH 및 포화도 변화에 따른 법랑질 내 수산화인회석 결정 형태의 변화

  • Chon, Young-Eui (Department of Conservative Dentistry, College of Dentistry, Yonsei University) ;
  • Jung, Il-Young (Department of Conservative Dentistry, College of Dentistry, Yonsei University) ;
  • Roh, Bung-Duk (Department of Conservative Dentistry, College of Dentistry, Yonsei University) ;
  • Lee, Chan-Young (Department of Conservative Dentistry, College of Dentistry, Yonsei University)
  • 전영의 (연세대학교 대학원 치의학과 치과보존학교실) ;
  • 정일영 (연세대학교 대학원 치의학과 치과보존학교실) ;
  • 노병덕 (연세대학교 대학원 치의학과 치과보존학교실) ;
  • 이찬영 (연세대학교 대학원 치의학과 치과보존학교실)
  • Published : 2007.11.30

Abstract

Since it was reported that incipient enamel caries can be recovered, previous studies have quantitatively evaluated that enamel artificial caries have been, remineralized with fluoride showing simultaneously the increase of width of surface layer and the decrease of width of the body of legion. There is, however, little report which showed that remineralization could occur without fluoride. In addition, the observations on the change of hydroxyapatite crystals also have been scarcely seen. In this study, enamel caries in intact premolars or molars was induced by using lactic acidulated buffering solutions over 2 days. Then decalcified specimens were remineralized by seven groups of solutions using different degree of saturation(0.212, 0.239, 0.301, 0.355) and different pH(5.0, 5.5, 6.0) over 10 days. A qualitative comparison to changes of hydroxyapatite crystals after fracturing teeth was made under SEM(scanning electron microscopy) and AFM(atomic force microscopy). The results were as follows: 1. The size of hydroxyapatite crystals in demineralized area was smaller than the normal ones. While the space among crystals was expanded, it was observed that crystals are arranged irregularly. 2. In remineralized enamel area, the enlarged crystals with various shape were observed when the crystals were fused and new small crystals in intercrystalline spaces were deposited. 3. Group 3 and 4 with higher degree of saturation at same pH showed the formation of large clusters by aggregation of small crystals from the surface layer to the lesion body than group 1 and 2 with relatively low degree of saturation at same pH did. Especially group 4 showed complete remineralization to the body of lesions. Group 5 and 6 with lower pH at similar degree of saturation showed remineralization to the body of lesions while group 7 didn't show it. Unlike in Group 3 and 4, Group 5 and 6 showed that each particle was densely distributed with clear appearance rather than crystals form clusters together.

법랑질 초기 우식이 회복된다는 것이 보고된 이래 법랑질에 대하여 불소를 첨가한 상태에서 행했던 이전의 연구들은 법랑질 인공우식의 재광화가 표면층의 증가와 함께 병소본체의 폭 감소가 일어난다는 정량적인 평가는 많이 하였으나 불소를 첨가하지 않은 상태에서는 재광화가 일어났다는 연구는 부족하였고, 또 수산화인회석 결정의 입자 변화에 대한 관찰도 미비하였다. 본 연구는 탈회나 균열이 없는 소구치 및 대구치를 대상으로 탈회 완충용액을 이용하여 법랑질을 2일간 탈회시키고, pH와 포화도가 상이 한 7가지 유산 완충용액으로 10일 동안 재광화를 유도한 후 치아를 파절시켜 수산회인회석 결정의 변화를 원자현미경과 주사전자현미경을 이용하여 정성적으로 비교 관찰하여 다음과 같은 결과를 얻었다. 1. 탈회된 부위에서 관찰된 수산화인회석 결정은 정상적인 수산화인회석 결정보다 크기가 작았으며 결정 사이의 공간이 증가하면서 결정들이 불규칙하게 존재하는 것이 관찰되었다. 2. 재광화된 부위에서는 탈회에 의하여 형성된 빈 공간에 작은 수산화인회석 결정이 새로 침착되는 양상과 결정들이 융합하여 다양한 모습을 갖는 더 커진 결정들을 관찰할 수 있었다. 3. 동일한 pH에서 포화도가 더 높은 3군, 4군은 1군, 2군에 비하여 표면층에서부터 병소본체까지 작은 결정들이 모여 큰 cluster를 형성하였으며 특히 4군에서는 병소본체까지 완전한 재광화가 일어났다. 비슷한 포화도에서는 pH가 더 낮은 5군, 6군은 7군에 비하여 병소본체까지 재광화가 일어났으며 3군, 4군처럼 결정들이 모여 cluster를 형성하기보다는 개개의 입자들이 뚜렷한 외형을 가지며 매우 치밀하게 분포되어 있었다.히고, 시간이 경과함에 따라 일렬로 배열된 섬모들로 대치되며, 그 후 섬모를 포함한 상부세포막이 부분적으로 돌출하고, 마지막으로 전형적인 후각소포로 발달한다. 나타내었다. 스폰지 케이크의 관능평가 결과 촉촉함이나 전체적인 기호도를 중심으로 평가할 때 증숙 마늘 분말 4% 첨가군의 선호도가 가장 높았다. 이상의 모든 분석결과를 종합하여 볼 때 증숙 마늘 분말 첨가시 케이크의 품질 및 기호도에 영향을 미치지 않으면서 첨가 가능한 범위는 8% 이내로 판단되며, 4% 첨가시 가장 우수한 품질을 얻을 수 있을 것으로 판단된다.할 것으로 보인다.. Sucrose, CCC 및 일장차이에 따른 AGPase 활성의 변화에 있어서 암처리에서는 sucrose 농도 3%보다 8%에서 양호하였고 sucrose 3%, 8%에서도 각각 CCC의 효과를 볼 수 있었다. 8시간 처리에서는 sucrose 농도 3%보다 8%에서 양호하였고 sucrose 3%, 8%에서는 CCC의 효과가 나타나지 않았다. 16시간 처리 sucrose 농도 3%보다는 8%에서 양호하였고 sucrose 3%에서는 CCC의 효과가 나타나지 않았으나 8%에서는 CCC의 효과를 볼 수 있었다. 결과적으로 sucrose의 농도가 높고, CCC와 암처리의 괴경형성의 촉진조건에서 AGPase의 활성이 양호함을 볼 때, AGPase가 starch 합성에 중요한 물질이라는 사실이 확인되었다. 평균 1.4/2.0점(70%)으로 가장 낮게 평가되었으며, '적정 검사시설 및 기구 구비' 항목은 공산품에서 평균 0.2점으로 평가되어 타품목에 비해 현저히 낮았고(p<0.01), 평가한 93개 항목 중 가장 불량한 상태로 관리되고 있음을

Keywords

References

  1. Aoba T. Solubility properties of human tooth mineral and pathogenesis of dental caries. Oral Diseases 10:249-257, 2004 https://doi.org/10.1111/j.1601-0825.2004.01030.x
  2. Aoba T, Moriwaki Y, Doi Y, Okazaki M, Takahasi J, Yagi T. The intact surface layer in natural enamel caries and acid dissolved hydroxyapatite pellets. J Oral Pathol 10:32-39, 1981 https://doi.org/10.1111/j.1600-0714.1981.tb01245.x
  3. Applebaum E. Incipient dental caries. J Dent Res 12:619-627, 1932 https://doi.org/10.1177/00220345320120040901
  4. Arends J, Jongebloed W, Ogaard B, Rolla G. SEM and microradiographic investigation of initial enamel caries. Scand J Dent Res 95:193-201. 1987
  5. Areds J, Ten Cate JM. Tooth enamel remineralization. J Crystal Growth 53:135-147, 1981 https://doi.org/10.1016/0022-0248(81)90060-9
  6. Backer D. Posteruptive changes in dental enamel. J Dent Res 9:396-402, 1965
  7. Brown WE, Chow LC. Thermodynamics of apatite crystal growth and dissolution. J Crystal Growth 53: 31-41. 1981 https://doi.org/10.1016/0022-0248(81)90053-1
  8. Bruskes JA, Christoffersen J, Arends J. Lesion formation and lesion remineralization in enamel under constant composition condition. Caries Res 19:490-496, 1985 https://doi.org/10.1159/000260887
  9. Darling AI. Studies of the Early Lesion of Enamel Caries with Transmitted Light, Polarized Light and Microradiography. Its nature, mode of spread, points of entry and its relation to enamel structure. Br Dent J 105: 119-135, 1958
  10. de Rooij JF, Nancollas GH. The formation and rem-ineralization of artificial white spot lesions : a constant composition approach. J Dent Res 63 (6) :864-867, 1984 https://doi.org/10.1177/00220345840630061001
  11. Exterkate RAM, Damen JJM, Ten Cate JM. A singlesection model for enamel de- and remineralization studies. 1. The effects of different Ca/P ratios in remineralization solutions. J Dent Res 72(12): 1599-1603, 1993 https://doi.org/10.1177/00220345930720121201
  12. Feagin F, Patel PR. Koulourides T, Pigman W. Study of the effect of calcium, phosphate, fluoride and hydrogen ion concentrations on the remineralization of partially demineralized human and bovine enamel surfaces. Arch Oral Biol 16:535-548, 1971 https://doi.org/10.1016/0003-9969(71)90199-3
  13. Featherstone JDB. The continuum of dental caries. Evidence for a dynamic disease process. J Dent Res 83(Spec Iss C):C39-C42, 2004 https://doi.org/10.1177/154405910408301S08
  14. Featherstone JDB, Mellberg JR. Relative rates of progress of artificial carious lesion in bovine, ovine and human enamel. Caries Res 15:109-114, 1981 https://doi.org/10.1159/000260508
  15. Frank RM. Structural events in the caries process in enamel. cementum, and dentin. J Dent Res 69 (Spec Iss): 559-566, 1990 https://doi.org/10.1177/00220345900690S112
  16. Gao XJ, Elliott JC, Anderson P. Scanning and contact microradiographic study of the effect of degree of saturation on the rate of enamel demineralization. J Dent Res 70: 1332-1337, 1991 https://doi.org/10.1177/00220345910700100401
  17. Gerdin PO. Studies in dentifrice. Clinical testing of an acidulated, nongrinding dentifrice with reduced fluoride contents. Sven Tandl Tidskr 67(5) :283-297, 1974
  18. Haikel Y, Frank RM, Voegel LC. Scanning electron microscopy of the human enamel surface layer of incipient carious lesions. Caries Res 17: 1-13, 1983
  19. Hallsworth AS, Weather JA, Robinson C. Loss of carbonate during the first stages of enamel caries. Caries Res 7:345-348, 1973 https://doi.org/10.1159/000259857
  20. Hayashi Y. High resolution electron microscopy of enamel crystallite demineralized by initial dental caries. Scanning Microscopy 9: 199-206, 1995
  21. Head JA. A study of saliva and its action on tooth enamel in reference to its hardening and softening. J Am Med Assoc 59:2118-2122, 1912
  22. Holmen L, Thylstrup A, Featherstone JDB, Fredebo L, Shariati M. A scanning electron microscopic study of surface changes during development of artificial caries. Caries Res 19:11-21, 1985 https://doi.org/10.1159/000260825
  23. Jacobeson APM, Strang R. Stephen KW. Effect of low fluoride levels in de/remineralising solutions of a pH-cycling model. Caries Res 25: 230-231. 1991
  24. Johnson NW. Some aspects of the ultrastructure of early human caries seen with the electron microscope. Arch Oral Biol 12: 1505-1521. 1967 https://doi.org/10.1016/0003-9969(67)90186-0
  25. Koch G, Petersson LG, Kling E. Effect of 250 and 1000ppm fluoride dentifrice on caries. A three-year clinical study. Swed Dent J 6(6) :233-238, 1982
  26. Lammers PC, Borggreven JM, Driessens FC. Influence of fluoride on in vitro remineralization of artificial subsurface lesions determined with a sandwich technique. Caries Res 24: 81-85, 1990 https://doi.org/10.1159/000261244
  27. Lammers PC, Borggreven JM, Driessens FC. Influence of fluoride and pH on in vitro remineralization of bovine enamel. Caries Res 26: 8-13, 1992 https://doi.org/10.1159/000261418
  28. Margolis HC, Moreno EC. Kinetics and thermodynamic aspect of enamel demineralization. Caries Res 19: 2235, 1985
  29. Margolis HC, Moreno EC. Physicochemical perspective on the cariostatic mechanism of systemic and topical fluorides. J Dent Res 69 (Spec. Iss) :606-613, 1990 https://doi.org/10.1177/00220345900690S119
  30. Margolis HC, Zang YP, Lee CY, Kent RL, Moreno EC. Kinetics of enamel demineralization in vitro. J Dent Res 78(7): 1326-1335, 1999 https://doi.org/10.1177/00220345990780070701
  31. Moreno EC, Margolis HC. Composition of human plaque fluid J Dent Res 67:1181-1189, 1988 https://doi.org/10.1177/00220345880670090701
  32. Moreno EC, Zahradnik RT. Chemistry of enamel subsurface demineralization in vitro. J Dent Res 53 (2) : 226-235, 1974 https://doi.org/10.1177/00220345740530020901
  33. Nancollas GH. Enamel apatite nucleation and crystal growth. J Dent Res 58(B) :861-869, 1979 https://doi.org/10.1177/00220345790580024001
  34. Pearce EI, Larsen MJ, Cutress TW. Studies on the influence of fluoride on the equilibrating calcium phosphate phase at a high enamel/acid ratio. Caries Res 29:258-265, 1995 https://doi.org/10.1159/000262078
  35. Shellis RP. A scanning electron-microscopic study of solubility variations in human enamel and dentine. Arch Oral Biol 41 :473-495, 1996 https://doi.org/10.1016/0003-9969(96)00140-9
  36. Shellis RP, Hallsworth AS. The use of scanning electron microscopy in studying enamel caries. Scanning Microsc 1(3):1109-1123, 1987
  37. Silverstone LM. The surface zone in caries and in caries-like lesions produced in vitro. Br Dent J 20:145-157, 1968
  38. Silverstone LM. The structure of carious enamel including the early lesions. Oral Sci Rev 4: 100-160, 1973
  39. Silverstone LM. The significance of remineralization in caries prevention. J Can Dent Assoc 50:157-167, 1984
  40. Silverstone LM, Hicks MJ, Featherstone MJ. Dynamic factors affecting lesion initiation and progression in human dental enamel. 1. The dynamic nature of enamel caries. Quint Int 19:683-710, 1988
  41. Silverstone LM, Wefel JS, Zimmerman BF, Clarkson BH, Featherstone MJ. Reminaralization phenomena. Caries Res 11: 59-84, 1977 https://doi.org/10.1159/000260296
  42. Silverstone LM, Wefel JS, Zimmerman BF, Clarkson BH, Featherstone MJ. Reminaralization of Natural and Artificial Lesions in Human Dental Enamel in vitro. Effect of calcium concentration of the calcifying fluid. Caries Res 15:138-157, 1981 https://doi.org/10.1159/000260512
  43. Takaaki Y. Crystalline structure of enamel in carious lesion. J Jpn Dent Ass 46:1167-1176, 1997
  44. Takaaki Y, Yasuo M. High-resolution electron microscopy of enamel-crystal demineralization and remineralization in carious lesions. J Electron Microsc 52(6) :605-613, 2003 https://doi.org/10.1093/jmicro/52.6.605
  45. Takuma S, Ogiwara H, Suzuki H, Electrowprobe and electron microscope studies of carious dentinal lesions with a remineralized surface layer. Caries Res 9(4): 278-285, 1975 https://doi.org/10.1159/000260163
  46. Ten Cate JM. Alternating demineralization and remineralization of artificial enamel lesions. Caries Res 16:201-210, 1982 https://doi.org/10.1159/000260599
  47. Ten Cate JM. Review on fluoride, with special emphasis on calcium fluoride mechanism in caries prevention. Eur J Oral Sci 105:461-465, 1997 https://doi.org/10.1111/j.1600-0722.1997.tb00231.x
  48. Tohda H, Yangisawa T, Takana N, Takuma S. Growth and fusion of apatite crystals in the remineralized enamel. J Electron Microsc 39:238-244, 1990
  49. Varughese K. Moreno EC. Crystal growth of calcium apatite in dilute solutions containing fluoride. Calcif Tissue Int 33:431-439,1981 https://doi.org/10.1007/BF02409467
  50. Warshawsky H, Nancy A. Stereo electron microscopy of enamel crystallites. J Dent Res 61: 1504-1514, 1982
  51. 금기연, 이찬영, 수종의 유기산이 법랑질 인공우식의 형성에 미 치는 영향. 대한치과보존학회지 21 :470-488, 1996
  52. 김민경, 금기연, 이찬영 범랑질 인공우식의 재광화에 미치는 pH 의 영향에 관한 연구. 대한치과보존학회지 22: 193-208 , 1997
  53. 김성철, 이찬영- 재광화 완충용액의 pH 변화가 상아질의 재광 화에 미치는 영향- 박사학위논문, 연세대학교 대학원, 서울, 2005
  54. 박성호, 이찬영, 이정석, 유산완충액을 이용한 인공치아우식의 형성에 미치는 산의 농도와 pH 에 관한 연구, 대한치과보존학회지 18:277-290, 1993
  55. 박정원, 허복, 이찬영 유기산 완충용액의 포화도가 법랑질 및 상아질의 재광화에 미치는 영향과 수산화인회석의 AFM 관찰. 대한치과보존학회지 25:459-473, 2000
  56. 오현석, 이찬영, 산 완충용액의 pH 및 유산의 농도가 인공치근 우식의 형성에 미치는 영향, 박사학위논문, 연세대학교 대학원, 서울, 2005
  57. 이찬영 산 완충용액을 이용한 인공치아우식 형성. 연세치대논문집 7:34-41. 1992
  58. 한원섭, 금기연, 이찬영. 인공치아우식의 재광화에 미치는 불소의 영향. 대한치과보존학회지 21:161-173, 1996
  59. 한원섭, 이찬영. 유기산 완충용액의 불소농도가 상아질의 재광화에 영향. 박사학위논문, 연세대학교 대학원, 서울, 2004