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Swarm Group Mobility Model for Ad Hoc Wireless
Networks

Dongsoo S. Kim, and Seok K. Hwang

Abstract—This paper proposes a new group mobility model
for wireless communication. The mobility model considers the
psychological ‘and sociological behavior of each node and the
perception of other nodes for describing interactions among a
set of nodes. The model assumes no permanent membership of a
group, capable of capturing natural behaviors as fork and join. It
emulates a cooperative movement pattern observed in mobile ad
hoc networks of military operation and campus, in which a set
of mobile stations accomplish a cooperative motion affected by
the individual behavior as well as a group behavior. The model
also employs a physic model to avoid a sudden stopping and a
sharping turning.

Index Terms—ad hoc networks, mobility model, swarm group
mobility, behavioral motion model, perception model, mobility
features.

I. INTRODUCTION

D hoc wireless networks consist of mobile hosts

equipped with wireless communication devices. The
transmission of a mobile host is received by all hosts within
its transmission range due to the broadcast nature of wireless
communication and omni-directional antennae. If two wireless
hosts are out of their transmission ranges in the ad hoc net-
works, other mobile hosts located between them can forward
their messages, which effectively builds connected networks
among the mobile hosts in the deployed area. Due to the
mobility of wireless hosts, each host needs to be equipped with
the capability of an autonomous system, or a routing function
without any statically established infrastructure or centralized
administration. The mobile hosts can move arbitrarily and can
be turned on or off without notifying other hosts. The mobility
and autonomy introduces a dynamic topology of the networks
not only because end-hosts are transient but also because
intermediate hosts on a communication path are transient.

A precise and realistic mobility modeling is very critical
for analyzing a network performance and designing network
architecture in wireless communication networks. In cellular
networks, a user’s mobility behavior directly affects signal
traffic, channel holding time and call blocking/dropping prob-
abilities [4]. Hence, a real network deployment and a network
algorithm implementation must be based on a realistic mobility
model. An unrealistic mobility model may cause an invalid
conclusion so that it leads to inefficient deployment of the
network system. Global position data are considered as the
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primary information in cellular network, but the major concern
in the ad hoc networks is the relative distance among mobile
hosts to maintain the connectivity without using the excessive
routing function of the mobile hosts [8], [18], [29], [30],
[32] and to minimize the transmission power while keeping
identical connectivity in order to maximize the battery lifetime
of the mobile hosts [5], [16].

This paper is organizated as follows: First, we discuss
related work in Section II. Then, in Section III, we propose
a new mobility model for ad hoc wireless communication
called the Swarm Group Mobility (SGM) model. The model
simulates the behavior of natural objects in terms of their
positions. This research does not intend to simulate the detail
motion like the joint movement of a natural object so that the
SGM model simplifies many aspects of perception, physics
and reasoning into the account of geographical movement of
mobile hosts. The model generally reflects the behavior of
individual mobile as well as a group of mobiles so that it gives
valuable synthetic information for analyzing and designing
systems or protocols in both cellular and ad hoc wireless
networks. Simulation in Section IV illustrates that the SGM
model is able to abstract new features of mobility models
suitable to the study of wireless networks. Finally, Section V
concludes our research and presents further research areas.

II. RELATED WORK

A random walk (RW) mobility model was derived from the
Brownian motion, which is a stochastic process that models
random continuous motion [19]. Lei and Rose [20] used the
Brownian motion with drift process to model the mobility
of the individual mobile user. The RW model has been
widely adopted by the cellular communication community
to model the behavior of wireless mobile hosts (MHs). An
MH of the model moves from its current location toward
a random direction and with a random speed, which are
arbitrarily chosen from the ranges of {0, 27) and [vmin, Vimax)»
respectively. Researchers have used the model to study the
cell residence time of a mobile user, and handover/location
management [1], [2], [3], [12], [23], [26], [27], [28], [33].
The model does not retain any information about its past
location and velocity (direction and speed) in determining
the current velocity. This memoryless decision may create
unrealistic motion as in sudden stopping and sharp turning.
To overcome this unrealistic rendering, many derivatives were
introduced including a Gauss-Markov mobility model [22], in
which the velocity at time ¢ is calculated as a weighted sum
of the velocity at t — At, a mean velocity, and a Gaussian
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random velocity. Another variation is a random destination
model [9], in which a mobile host chooses its velocity and
distance in travel from a given distribution and then moves
in the direction. When the node completes the travel for the
given distance, it calculates a new velocity and a distance in
travel.

A random waypoint (RWP) mobility model is widely used
in the wireless communication community [10], [11], [14],
[17]. An MH of the model chooses a random destination in a
given space and then moves in a random steady speed toward
the destination. Once the host reaches the destination, it takes
a pause for a random time before choosing a new destination
and moving in a steady speed toward the new destination. The
model tends to concentrate on the middle of its deployment
region, caused by the so-called border effect [24], which
indicates the spatial distribution of nodes is not uniform. Many
research results of ad hoc mobile networks are based on the
assumption of uniform snapshot of networks nodes, the border
effect has a limitation in applying the model to the mobile ad
hoc networks [6]

The mobility models described above are classified as entity
mobility models, where the motion of each MH is independent
of other MH motions. The entity models are useful in eval-
vating the performance of cellular communication networks,
because a spatial distribution is its primary interest in this
environment to acquire the cell residence time of a host,
the frequency of cell boundary crossover, and so on. The
relationship between MHs is not the main concern in the
cellular networks. In ad hoc wireless networks, however, a
MH communicates with its neighbors so that it is imperative
to identify the relationship among MHs. There are several
situations where the group of hosts accomplish a cooperative
motion similar to military mission and civilian tasks. For
example, a group of military soldiers in a mission cooperate
to maximize the efficiency of the mission and to defend
themselves from enemy attack. A vehicle on a highway tries
to match its speed with other vehicles to avoid collision so
that the distance between two nearby vehicles is maintained
consistently even though they travel at the high speed. To
find reasonable relationships among the movements of mobile
nodes for developing and evaluating many aspects of ad hoc
networks, it is important to develop a realistic group mobility
model.

The exponential correlated random (ECR) model was
known as the first group mobility model used in the wireless
communication community [15]. In the model, a new position
is computed as the weighted sum of the previous position
and a Gaussian random deviation. To determine the weight,
which results in determining the behavior of group mobility,
the model uses two parameters, an exponential correlation (7)
and a variance (o). Unfortunately, it is not easy to render
a wanted motion pattern by choosing the pair of parameters
(7,0).

Hong et al. proposed the reference point group mobility
(RPGM) model [15]. To represent the behavior of a group of
MHs, the model defines a logical reference center for each
group. All hosts in the group follow the reference center.
The physical movements of the group center and its group

members are determined by two motion vectors: a group
motion vector and a random motion vector. The model gives a
path by defining a sequence of check points, on which a group
follows. A group moves from one check point to the next
check point before the reference center computes a new group
motion vector. The RPGM model can generate a group-based
motion for simulating ad-hoc networks. However, the model
has several drawbacks. First, the model requires each node in a
group to have a complete knowledge about the reference center
regardless of their physical location and topological relation.
In the nature of ad-hoc networks, such a global knowledge
may not be available to each MH. Secondly, the model causes
a sudden starting/stopping and a sharp turning of each MH.
This unrealistic modeling is caused by using only the group
motion vector to decide the motion of each MH. Third, the
model requires a strong membership of each MH to a group
so that a dynamic fork (departure of a node from a group)
and join (addition of a node to a group) cannot be produced,
which is frequently observed in the real world.

To overcome the problem of the global knowledge, the
reference velocity group mobility (RVGM) model has been
proposed by Wang et at., in which each mobile group has a
characteristic group velocity instead of a group position [31].
A member node in a group determines its velocity by consid-
ering a random motion vector and its group velocity so that it
can be regarded as the time derivative of the displacement-
based group mobility in the RPGM model. The velocity
representation of the RVGM model can provide a distinct
membership in a velocity coordinate space, which can be
utilized to predict a group partition and mobility pattern.

III. SwWARM GROUP MOBILITY MODEL

The motion of swarming individual identities is a natural
behavior. Group mobility such as herds of land animals,
infantry soldiers on a battlefield, and vehicular transporta-
tion on a highway consists of individual units but exhibits
some characteristics of team collaboration in the population.
There seems to be a centralized control over all members
of the group, but it is an aggregated behavioral tendency of
independent units, each of which is acting on the basis of
its own local perception [25]. We call such a group motion
a Swarm Group Mobility model (SGM). To describe group
mobility using the SGM, we simulate the psychological and
sociological behavior of an individual node and some level of
perception and physics.

A. Physics Model

In the model, a node is initially located randomly on zy-
euclidean space and assigned initial random velocity whose
speed and direction are in the range of [Umin, Umax] and [0, 27),
respectively. Uyn and vmax are the minimum and maximum
speed at which a node travels. The maximum speed can
be considered as a speed limit in a vehicular transportation
simulation, or as an equilibrium speed balance of propelled
force and aerodynamic resistance. In addition to the maximum
speed, each node also has a constant parameter of a maximum
acceleration. In real world, the acceleration of a node is
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depending on its mass and propelled force. Assuming that a
node has a maximum propelled force, it is reasonable to have
the corresponding maximum acceleration for the given mass.
Using the maximum acceleration overcomes a sudden starting
and stopping in other mobility models such as the random
walk and the random way point models [24], [33]. As a result
of the given maximum acceleration, it can also model a slow
curve at a high speed due to a physics law.

B. Perception Model

Each node in the model emulates its visual or audio senses.
However, a precise perception modeling itself is out of the
scope of this paper. The perception model in this paper is sim-
plified to extract a direct effect on its movement. The motion
of a node is heavily dependent on the sensing and cognitive
process of the node and its environment. For example, if an
node is assumed to be a human being moving during daytime,
it highly relies on directional visual sense, but an omni-
directional audio sense is the main cognitive input process
during nighttime. For a high-speed vehicular simulation, the
visual attention angle is highly dependent on the speed of the
vehicle. This paper does not intend to discover the cognitive
processes themselves, but wants to find how much neighbors
of a node affect its movement.

The nodal behavior in the SGM depends only on nearby
neighbors. The neighborhood of a node is defined as a cyclic
region centered at the node. To model the sensitivity, the
communication theory of attenuation ratio is borrowed. The
attenuation of a signal is defined as the reduction or loss
in signal power as it propagates through a system such as
Piend/ Preev [211, where Pieyq is the signal power sent by a
signal source and P is the signal power received by a
signal receptor after traveling through a media. For free space,
attenuation is proportional to ™, where d is the distance from
the signal source, n is a path loss exponent (mostly n = 2 and
for environment with obstacles, n > 2), and « is a constant
coefficient. Henceforth, Peey = Pieng/ad™, in that the received
signal power is inversely proportional to the attenuation. An
node movement is sensitive to the received signal power,
but the relationship between the motion sensitivity and the
received signal power is still being researched. There are
many unknown factors in the relationship, and it might depend
on the kind of signals. For example, it is reasonable to
assume that the sensitivity of an audio signal is proportional
to decibel, or nlogd. For some environments, attenuation
might have an exponential dependence on distance, that is,
Psend/-Precv = ael.

Our goal in this paper is to characterize the metrics of the
weight of attraction or repulsion between two nearby particles
but not to compute an exact received power. As a result, we
propose three perception sensitivity weight models and define
a maximum sensing distance to make the simulation model
simple. The first sensitivity weight model of a quadratic model
is based on the assumption that the motion sensitivity is di-
rectly proportional to the received signal power in a free space.
If a neighbor of a node is out of its sensing maximum range
(dmax), we assume that the node is not affected by the neighbor.

So, the motion sensitivity function s depending on the distance
from a signal source to a signal receptor is described as
s1(d) = ¢1/d"™. The next model is a logarithmic model in
which the motion sensitivity is related to the logarithm of
the received signal power as s3(d) = cy/logd. The weight
of the logarithmic mode! can be maintained over a much
longer distance than other models. From these models, the
weight increases infinitely as the distance decreases. To avoid
this infinity weight, the constant of the minimum distance
dmin can be introduced to make the weight constant within
a short distance as s;(dmin). The last model is an exponential
model. The exponential model can be used to avoid the case
of the infinity weight as s3(d) = czexp(—2nd/dna). The
exponential model shows a slow curve of the weight functions
among close neighbors.

C. Behavioral Model

In the SGM simulation, each node emulates its behavior
on 2D space. Note that a simulation on 3D space includ-
ing gravity and buoyancy modeling is out of scope of this
paper. The simulation is based on several behavioral models
such as centering, target-seeking, collision avoidance, velocity
matching, and random navigating. Each behavior or tendency
is expressed as a force, and prioritized by being assigned a
weight from the sensitivity models discussed in the previous
section. The resulting acceleration is denoted as a weighted
sum of the forces.

A node has a tendency to move itself toward the center of
its neighbors. Why do natural nodes tend to come close to
each other? The primary argument might be the consequence
of several psychological or sociological considerations such
as protecting from attack, taking advantage of search for food
or target. The centroid tendency of node j is expressed as
v§ = > pi/n—pj, where p; is the position vector of neighbors
within the sensing range of node j and n is the number of the
neighbors. If a node is in the middle of a cluster, the center
of the neighbors Y p;/n is near the current position of the
node p; and the effect of the centering tendency is balanced
and canceled. For a node on the side of the cluster, however,
the majority of neighbors are on one side of the node and the
tendency toward the center becomes greater than nodes in the
middle of the cluster.

A node makes pursuit of targets within its sensing range. A
closer target has a higher priority than other targets, which
is modeled using one of the sensitivity models described
previously. The target-seek tendency of node j is given by
ot = Y sl —psl)pi — py)/ S s(lps — psl). where the
function s() denotes one of the sensitivity weights described
in the previous section, and p; is the position vector of target
¢ within the sensing range of node j.

While the tendencies of centroid and target-pursuit can
make nodes come too close each other, the collision avoid-
ance model stimulates nodes to keep away from an impact.
This opposite force between two nearby nodes can simulate
not only a direct crush avoidance, but also an effect for
spreading nodes in a small region by adjusting constants
dmin and dp.; of the sensitivity weight models. The reasons
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why nodes tend to spread are the result of efficiency or
safety concerns. For examples, an animal seems to look for
its own territory for food, a soldier moves forward while
maintaining its own coverage, and a driver needs to keep a
safe distance from its neighbors to avoid a possible collision.
The collision avoidance tendency of node j can be denoted by
o8 = 3 s(lpi — pil)(p; = i)/ 2 s([ps — ;). where p; is the
position vector of neighbor 4 within a collision distance from
node j.

A node has a tendency of moving in the same direction and
speed as its neighbors. The reason for this behavior is that a
node esteems that it may be disjoined from a group in a near
future unless it follows its neighbors’ behavior. The tendency
is also prioritized on the distance to the neighbors and denoted
by v7* = 3 s(lpi — pil)vi/ 20 s(lps — p5|), where v; is the
velocity of neighbor : within a sensing distance of node ;.

An intelligent node decides its behavior based on the
dynamic models described above: centroid, target-pursuit,
collision-avoidance, and velocity-matching. Each model is as-
signed a precedence to model the attention to the circumstance.
In a real group motion, however, a node (e.g. an animal in
a herd of land animals) may show an unexpected sudden
behavior such as deviating from the group or falling behind
the group. A random velocity vector is added to model this
unexpected behavior. Combining all the behavior and physics
models, the new velocity (v;) and the new position (p;) of
node 7, are computed from the following kinematic equations:

aj = wvi + wtv§ +wvi + wmv;" +w'vj 6
v; = ow; + min(a;, {Gmax, tan~* a;}) 2)
p; = Bp; + min(v;, (Vmax, tan ™! v;))AT, 3)

where (r,tan~* v) is a vector in a polar coordination whose
length is 7 and angle is identical to that of vector v. ampay
and vmax are pre-defined constants to indicate the maximum
acceleration and the maximum speed of the node. « and 3
decide the rate of change from old to new. A small o and 3
will result in large possible change in a new velocity.

D. Complexity

The time complexity of the SGM simulation for n nodes is
O(n?), because each node has to consider all other nodes, that
is, a node needs the positional information of all nodes, even
if only to determine whether the nodes are within the range
or not. A real node, however, moves without considering the
whole population. Instead, it considers only nearby neighbors.
The question is how to make a simulated node sense and
consider only nearby nodes even without accessing informa-
tion of distant nodes. A simple solution is to order particles
based on either z-position and/or y-position. Assuming that
nodes are ordered on z-position, a node at (p,, p,) investigates
neighbors in the range of p, + d, from the ordered list,
where d, is the sensing distance. The effect of the range is
to divide the space into a vertical strip. Even though the strip
can reduce the mumber of particles under consideration, the
computation complexity for maintaining the ordered list is not
trivial because a node needs to retrieve the ordered list to find
the correct location, to update its order list for for each move
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Fig. 1. Basic Characteristics of Swarm Group Model

of a particle. Another approach to mimic the local retrieval
is to partition the space into grids with a fixed interval, and
to create a dynamic association of a node position and a grid
cell. By choosing the grid interval as d;, for example, a node
in a grid cell (7, ) only needs to retrieve nodes in nine nearby
cells of the range (¢ 1, j£ 1) to find the set of its neighbors.

IV. EXPERIMENTATION

We conducted comprehensive simulations for the swarm
group model as well as the random walk model and the random
waypoint model to compare with the new group model. Each
model consisted of 20 mobile hosts in 800m by 600m, and the
nodes were randomly placed in the simulation region initially.
The simulation of each model was run for 12 hours.

The traveling pattern of mobile nodes using the SGM model
is shown in Figure 1(a), in which four mobile nodes were
chosen for 600 seconds. The tracing characteristics of other
mobility models can be found in [7]. The mobile node
in our simulation were initially placed in random location
indicated by small circles, but they formed two groups shortly
after starting the simulation. Each mobile node moved wildly
within the group depending on the behavioral model described
previously.
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Figure 1(b) shows the normalized node spatial distribution
of the SGM model with-a rebound boundary, in which a node
changes its direction oppositely when it reaches a boundary.

The theoretical and experimental spatial distribution of the-

random walk and the random waypoint models can be found
in [4], [13], [24]. The nodal distribution in the figure is almost
uniform in the middle of the simulation region. However, it
increases as it comes close to the boundary and decreases at
the boundary. This distortion is caused by the clustering effect
of the SGM. When a group of nodes rebound at the boundary,
nodes in their leading group rebound naturally, but nodes in the
succeeding group tend not only to move toward the boundary,
but also to change their direction to the leading group directly.
The nodes in the succeeding group can follow the leading
group without rebounding to the boundary. As a result, the
density close to the boundary is high, but the one at the
boundary is low. To avoid the distortion of spatial distribution
with a limited simulation region, a boundless simulation area
can be adopted, in which a mobile node reaching one side of
the boundary continues travelling and reappear on the opposite
side of the boundary [7]. In addition, a node calculates the
distance of its neighbor by considering a boundary wrapped
around with its opposite boundary. For example, the distance
Do > between two nodes ¢ and b, whose locations are
(Za,Ya) and (s, ys ), respectively, can be obtained as

D2<a,b> = min(|2, — Zp|, Xmax — [Ta — xb|)2

+ min(lya - yb', Yinax — ‘ya - yb|)27

where Xpax and Y.« are the size of simulation area. The
boundless simulation eliminates the distortion in the spatial
distribution, but its inter-nodal distribution, the essential char-
acteristic for ad-hoc networks, is very similar to the result of
a rectangular area.

Figure 2(a) shows the nodal distribution depending on the
inter-node distance for the four mobility models. Note that
the distributions are normalized to fairly compare among the
models. To the study of ad hoc wireless networks, the relation
between the number of mobile hosts and their distance is
the major concern rather than the spatial distribution, because
communication occurs between the mobile hosts but not
between a base-station and a mobile host. Although both the
Random Walk model and the boundless SGM have uniform
spatial distributions, the movement pattern and aggregated
behavior of mobile hosts in the SGM generate an extremely
different result from the Random Walk model. More properly,
the boundless SGM holds a similarity with the rebounding
SGM regarding the inter-node distribution.

The nodal distribution of inter-node distance is the feature
of ad hoc wireless communication networks for estimating
a node connectivity among its neighbors and optimizing the
power consumption of a mobile host. For example, assume that
it is sufficient for a node to maintain 4-connectivity in average
by adapting its transmission power. Note that the simulation
was conducted with 20 mobile hosts so that 4 nodes can
be considered as 20% of population. If the mobile hosts are
assumed to move in the Random Walk model, a node must
maintain its transmission power for 200m from the distribution
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of Figure 2(a). In the meanwhile, a node can transmit with
the power of no more than 100m if the nodes are assumed to
follow the SGM models.

In Figure 2(b), we show the relation between node speed
and the number of nodes within a transmission range of 100m.
As we can expect, the Random Walk and Random Waypoint
models indicate no relationship and the numbers of nodes in
the transmission range are very low because nodes wander in
the simulation space independently without any collaboration.
The number of nodes for the Random Waypoint model is
slightly larger than the number of nodes for the Random Walk
model because of the border effect, or non-uniform spatial
distribution, in which the node density in the mid-space is
higher than the one at the boundary.

In both SGM models, however, the number of neighbors
increases as the node speed increases, which indicates that
the higher speed nodes move, the higher tendency the nodes
aggregate each other. As described earlier, a node moves as
a result of a combination of five forces in conjunction with
its current speed. The combined forces have relatively more
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impact to the node movement in a slow speed than in a high
speed so that the opposite forces, such as collision-avoidance
tendency and the random navigating, cause the group of nodes
to scatter. Another reason is that the force of velocity-matching
becomes low as the nodes move slowly, so that the impact of
this positive force, or an aggregating force, is not intense at the
low speed. Comparing the boundless and rebounding SGMs,
the boundless SGM has higher aggregation that the rebounding
SGM because a node follows its group at a boundary in
the former model without any obstables so that nodes are
aggreagated each other for a logner time.

V. CONCLUSION

In this paper, we proposed a group mobility model named
Swarm Group Mobility model. The model generated the
realistic motion of living creatures or objects controlled by
living creatures by mimicking perception, physics, and psy-
chological behaviors. The model simplified and parameterized
the behavioral models. The model can be easily utilized for ad
hoc wireless communication networks, in which the traditional
Random Walk or Random Waypoint mobility models are not
sufficient because they do not explain the correlation of node
movements and the assumption of uniform randomness. Ex-
tensive simulation was conducted to compare the new mobility
model with the traditional models. A couple of new features
were extracted from the simulation, which are adequate for
applying the ad hoc mobile network to the study of optimizing
peer connectivty and transmission power.

There are several directions to the future work of the SGM
model. Parameters used in the model, such as the sensing
model, weight of behavioral models, need to be optimized
for real group motion. By tracing real mobile host, a set
of features in mobility needs to be developed so that the
simulation and its parameters can be optimized to match to
the feature set. A terrain model must be also considered for
evaluating wireless communication in hills/valley, highways,
3D indoor and metropolitan pedestrians.
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