The Variations of Tensile and Fatigue Properties in the Hydroforming Process

하이드로포밍 공정 전후의 인장 및 피로 물성 변화

  • 오충석 (금오공과대학교 기계공학부) ;
  • 권순규 ((주)화신 기술연구소) ;
  • 최병익 (한국기계연구원 나노공정장비연구센터)
  • Published : 2007.12.01

Abstract

Hydroforming is a cost-effective way of shaping malleable metals such as steel into lightweight, structurally stiff and strong pieces. With the increased use of the hydroformed components in automotive and aerospace industries, it is important to know the variations of the mechanical properties in the hydroforming process far the safe and durable design purposes. The principal goal of this paper is to suggest a procedure to evaluate the variations of tensile and fatigue properties before and after a hydroforming process. A miniature specimen, which is 0.2 mm thick and 2.3 mm wide, is devised and tested to measure local mechanical properties. The effects of specimen size, defects, surface roughness, and hydroforming on the tensile and fatigue behaviors are discussed.

Keywords

References

  1. Lang, L. H., Wang, Z. R., Kang, D. C., Yuan, S. J., Zhang, S. H., Danckert, J. and Nielsen, K. B., 'Hydroforming Highlights: Sheet Hydroforming and Tube Hydroforming,' J. Mater. Process. Technol., Vol. 151, No. 1-3, pp. 165-177, 2004 https://doi.org/10.1016/j.jmatprotec.2004.04.032
  2. Dohmann, F. and Hartl, Ch., 'Hydroforming- a Method to Manufacture Light-Weight Parts,' J. Mater. Process. Technol., Vol, 60, No. 1-4, pp. 669-676, 1996 https://doi.org/10.1016/0924-0136(96)02403-X
  3. Lucke, H. D., Hartl, Ch. and Abbey, T., 'Hydroforming,' J. Mater. Process. Technol., Vol. 115, No. 1, pp. 87-91, 2001 https://doi.org/10.1016/S0924-0136(01)00774-9
  4. Hartl, Ch., 'Research and Advances in Fundamentals and Industrial Applications of Hydroforming,' J. Mater. Process. Technol., Vol. 167, No. 2-3, pp. 383-392, 2005 https://doi.org/10.1016/j.jmatprotec.2005.06.035
  5. Ueda, T., 'Differential Gear Casings for Automobiles by Liquid Bulge Forming Processes - Part 1,' Sheet Metal Industries, Vol. 60, No. 3, pp. 181-185, 1983
  6. Siegert, K., Haussermann, M., Losch, B. and Rieger, R., 'Recent Developments in Hydroforming Technology,' J. Mater. Process. Technol., Vol. 98, No. 2, pp. 251-258, 2000 https://doi.org/10.1016/S0924-0136(99)00206-X
  7. Ahmetoglu, M., Sutter, K., Li, X. J. and AItan, T., 'Tube Hydroforming: Current Research, Applications and Need for Training,' J. Mater. Process. Technol., Vol. 98, No. 2, pp. 224-231, 2000 https://doi.org/10.1016/S0924-0136(99)00203-4
  8. Kim, J., Lei, L. P., Hwang, S. M., Kang, S. J. and Kang, B. S., 'Manufacture of an Automobile Lower Arm by Hydroforming,' Int. J. Machine Tools & Manufacture, Vol. 42, No. 1, pp. 69-78, 2002 https://doi.org/10.1016/S0890-6955(01)00087-6
  9. Manabe, K. I. and Amino, M., 'Effects of Process Parameters and Material Properties on Deformation Process in Tube Hydroforming,' J. Mater. Process. Technol., Vol. 123, No. 2, pp. 285-291, 2002 https://doi.org/10.1016/S0924-0136(02)00094-8
  10. Hama, T., Asakawa, M. and Makinouchi, A., 'Investigation of Factors which cause Breakage during the Hydroforming of an Automotive Part,' J. Mater. Process. Technol., Vol. 150, No. 1-2, pp. 1017, 2004
  11. Lei, L. P., Kim, J. and Kang, B. S., 'Analysis and Design of Hydroforming Process for Automobile Rear Axle Housing by FEM,' Int. J. Machine Tools & Manufacture, Vol. 40, No. 12, pp. 1691-1708, 2000 https://doi.org/10.1016/S0890-6955(00)00031-6
  12. Kim, J., Kang, S. J. and Kang, B. S., 'Computational Approach to Analysis and Design of Hydroforming Process for an Automobile Lower Arm,' Computers & Structures, Vol. 80, No. 14-15, pp. 1295-1304, 2002
  13. Kim, J., Lei, L. P. and Kang, B. S., 'Preform Design in Hydroforming of Automobile Lower Arm by FEM,' J. Mater. Process. Technol., Vol. 138, No. 1-3, pp. 58-62, 2003 https://doi.org/10.1016/S0924-0136(03)00049-9
  14. Luo, A. A., Kubic, R. C. and Tartaglia, J. M., 'Microstructure and Fatigue Properties of Hydroformed Aluminum Alloys 6063 and 5754,' Metallurgical & Mater. Transactions A, Vol. 34, No. 11, pp. 2549-2557, 2003 https://doi.org/10.1007/s11661-003-0014-3
  15. Jeelani, S., Natarajan, R. and Reddy, G. R., 'A Subsized Fatigue Specimen,' Int. J. Fatigue, Vol. 8, No. 3, pp. 159-164, 1986 https://doi.org/10.1016/0142-1123(86)90008-3
  16. ASTM, 'Standard Test Methods for Tension Testing of Metallic Materials [Metric],' ASTM E8M-00, 2000
  17. ASTM, 'Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials,' ASTM E466-96, 2000
  18. Kim, S. W., Oh, C. S. and Lee, H. J., 'Specimen Aligning Techniques in Tensile and Fatigue Tests for Thin Films,' Fat. Fract. Engng. Mater. Struc., Vol. 30, No. 1, pp. 64-71, 2007 https://doi.org/10.1111/j.1460-2695.2006.01089.x
  19. Bannantine, J. A., Comer, J. J. and Handrock, J. L., 'Fundamentals of Metal Fatigue Analysis,' Prentice Hall, 1990