44 / sr=T Lk s stel x|

A28 A5, 2007. 12

HYDRODYNAMIC SOLVER FOR A TRANSIENT, TWO-FLUID, THREE-FIELD
MODEL ON UNSTRUCTURED GRIDS

1. Jeong,*l HY. Yoon,2 J. Kim,l LK. Park’ and HK. Cho’
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A three-dimensional (3D) wunstructured hydrodynamic solver for transient two-phase flows has been
developed for a 3D component of a nuclear system code and a component-scale analysis tool. A two-fluid
three-field model is used for the two-phase flows. The three fields represent a continuous liquid, an entrained
liquid, and a vapour field. An unstructured grid is adopted for realistic simulations of the flows in a
complicated geometry. The semi-implicit ICE (Implicit Continuous-fluid Eulerian) numerical scheme has been
applied 1o the unstructured non-staggered grid. This paper presents the numerical method and the preliminary
results of the calculations. The results show that the modified numerical scheme is robust and predicts the
phase change and the flow transitions due to boiling and flashing very well.
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1. INTRODUCTION

A realistic simulation of two-phase flows is essential
for the design and safe operation of a nuclear reactor
system. The state-of-the-art nuclear system analysis codes,
such as RELAP5-3D[1], TRAC-PF1[2], CATHARE2[3],
MARS[4], etc., use one-dimensional two-fluid models for
the analysis of transient two-phase flows in light water
nuclear reactors. All the flows are assumed to take place
in one-dimensional ducts and are described with their
cross-sectional-average parameters such as void fraction,
enthalpy, etc. However there are some situations, e.g.,
flows in the downcomer of a pressurized water reactor,
flows through the steam generator tube bundles, etc., that
are clearly three-dimensional{5].

These have motivated the

development of 3D
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thermal-hydraulic components for the above-mentioned
system codes. The 3D components, however, adopt a
structured grid based on rectangular Cartesian or
cylindrical coordinates. Therefore a realistic modeling of
the flow in a complicated geometry is inherently difficult
and, thus, a proper geometry input modeling is needed.
These limitations can be covered in part by using the
so-called component-scale analysis codes, such as
FLICA[6], ATHOS[7], GOTHIC[8], etc. However, since
these have been developed for component-specific uses,
either fluid models for two-phase flows or numerical
solution schemes are not appropriate for general transient
two-phase flows in complicated flow geometries.

The use of CFD (computational fluid dynamics) codes
for a detailed analysis of two-phase flows in a nuclear
reactor coolant system[9] has also been extensively studied
and it is known to be very promising. But, the capabilities
of the CFD codes are currently restricted to certain
two-phase flow regimes and, furthermore, they require a
huge computational cost[10]. It seems that the direct use
of two-phase CFD codes for a system transient analysis
would not be practical for a few decades. In recognition
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Fig. 1 The concept of multi-scale computations[11].

of this, the concept of a "multi-scale” analysis has been
developed[11,12). The behavior of an entire system is
obtained by using a system code. Local phenomena in a
part of a system may be addressed at the meso-scale
(component scale) level, with the relevant tools considering
smaller scales and more detailed flow models. Finally, one
may need to obtain wall and interfacial momentum, heat,
and mass transfer laws by performing studies at the
smallest possible scale. Figure 1 shows the concept of a
multi-scale analysis.

The primary objective of this work is to develop an
unstructured hydrodynamic solver that can be used for
both the 3D component of a system code and
component-scale analysis tools. In this work, a transient,
three-dimensional, two-fluid, three-field model is adopted
and the governing equations are solved on an unstructured
mesh, which is very useful for flows in a complicated
geometry. As for the numerical solution scheme, the
semi-implicit ICE method[1,13,14] has been modified for
an unstructured non-staggered grid. This paper presents the
numerical method for the unstructured hydrodynamic solver
and the preliminary results of the calculations.

2. GOVERNING EQUATIONS OF THE TwO-FLUID
THREE-FIELD MODEL

A transient two-fluid three-field model was adopted for
two-phase flows. In this model, the three fields represent
a continuous liquid, an entrained liquid(droplet), and a
vapor field[4]. The use of the three-field model is
particularly useful in describing the thermal-hydraulics of a
nuclear reactor and containment during a hypothetical
large-break loss of coolant accident. The mass, energy,

and momentum equations for each field are established
separately and, then, they are linked by the interfacial
mass, energy, and momentum transfer models. The
resulting governing equations are similar to those of the
time-averaged two-fluid equations derived by Ishii and
Hibiki[ 15].

The continuity equation is
0
a(akpk)_’-v'(akpkyk):rk (M

where k=l, d, v(continuous liquid, entrained liquid, vapor)
a: volume fraction,
p: density,
u: velocity,

I, interfacial mass transfer rate per volume.

The momentum equation is given by

0
E(akpkl‘_k)"'V‘(akpk.l!kﬂk)z_akvp

+V-[a,(r, +7)]+ap, g

+u,l, + M, -Va, -1, )]

where P: pressure,

“: interface velocity of k-phase,

7. viscous shear stress,

7F': turbulent shear stress,

Tii. interfacial shear stress,

g: gravitational acceleration,

Mj: the sum of interfacial drag and lift force.

The energy equation is represented by

0
a(akpkek) +V (o, peu,)=-V-la, (g, + g}

—P—aa;ak - PV-(a,u,)+ P, + @) +0, +T A,

+ My, ~u )+ Vay, T (U, —u )+ gy 3)

where e internal energy of k-phase,
@, : turbulent energy source,
@; : viscous dissipation,
QO interfacial heat transfer,
gwe: wall heat flux.
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Fig. 2 Staggered grid mesh.

It is assumed that the continuous liquid and entrained
liquid are in a thermal equilibrium. Thus, the sum of the
two liquid energy equations(the continuous liquid and
entrained liquid energy equations) is solved. As a result,
five scalar equations(i.e., three continuity and two energy
equations) and three momentum equations are used.

The independent state variables for the scalar equations
are chosen to be P, a, a; e, and e. For each
component of the k-phase momentum equations, the
corresponding  velocity component is regarded as an
independent variable.

For a mathematical closure, equations of the states
(EOS) and constitutive relations are needed. That is, the
thermodynamic variables such as densities, temperatures,
etc., are expressed as functions of pressure and phasic
internal energy. The saturation property is represented as a
function of pressure. All the terms in the right-hand sides
of Eqs.(1) through (3), including the interfacial heat, mass,
and momentum transfer terms, are also given as functions
of the independent state variables and phasic velocities.

3. NUMERICAL SOLUTION METHOD

The semi-implicit coupled ICE scheme was adopted as
a basis of this work. In Section 3.1, the semi-implicit ICE
scheme in the RELAP5 code[l] is introduced first for
simplicity. The RELAP5 code uses a one-dimensional
two-fluid model. It adopts a finite difference method based
on a staggered grid. Meanwhile, we use the
three-dimensional, three-field model and a finite volume
method over an unstructured grid. Thus, some
modifications to the numerical scheme are needed. These
are explained in Section 3.2.

3.1 THE Semi-IvpLiCIT ICE SCHEME

In the RELAPS code, the continuity, momentum, and
energy equations for liquid and vapor phases are used,
which are similar to Eq. (1) through Eq. (3). Because of
the one-dimensional approach, the viscous and turbulent

shear stress terms in the momentum equations are
represented by a wall friction term.

Fig. 2 shows the one-dimensional staggered mesh. At
first, the liquid and vapor momentum equations in an
expanded form are integrated over the momentum cell j in
Fig. 2. The convection term in the momentum equation is
explicitly treated, whereas the pressure gradient, interfacial
drag, and wall friction terms are implicitly treated. This
approach yields two coupled equations with two unknown
phasic velocities at junction j and unknown pressures at
the adjacent cells. By solving the equations, the new time
phasic velocity at junction j is represented as a function
of the pressures of the adjacent cells K and L:

u:;l = u,‘;‘f + ﬂk./ (6P —-6P,) )

where &P = Pl - p7,
n: old time step
nt+1: new time step

exp

“. ;. new time velocity of k-phase based on the
old time pressure gradient,

B

«, . coefficient derived from the phasic
momentum equations.

Next, the mass and energy equations are integrated over
a hydrodynamic cell L. In the convection terms of the

scalar equations, the convected properties (ie., %P in

the mass equations and %«Pi€ in the energy equations)
are explicitly determined by using the donor-cell scheme
and the velocities are implicitly treated. Meanwhile, the
interfacial heat and mass transfer terms are implicitly
treated, resulting in phase-coupled continuity and energy
equations[1]. The resulting discretized equations are
ordered in the following sequence: (i) vapor energy
equation, (ii) liquid energy equation, (ii) the difference of
the phasic continuity equations, and (iv) the sum of the
phasic continuity equations. These equations are linearized
with respect to four independent state variables, (e, e, @,
P). Then they are represented as

L n+l 2 n+l

1 1 2 1
Ax=s5+g u:,;n +1 Uatg u:’j "'Z U %)

4. 4x4 matrix obtained from the above-mentioned
scalar equations,

x: solution vector, X =col(de,,de,,6a,,6P)

s, 8./"¢% and /”: coefficient vectors (known).
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Fig. 3 Control volumes and geometric vector.

Multiplying Eq. (5) by 4 l , the bottom row in Eq. (5)
results in a single equation involving the pressure and the
unknown velocities. Substituting Eq. (4) into this equation
yields a single equation involving only the pressures. This
is done for each computational cell and, at last, an N x
N system of linear equations for the new time pressures
in a system containing N cells is established. By solving
the system of equations, the new time pressures are
obtained, which are substituted into Eq. (4) to obtain the
new time velocities. Now, the new time independent
variables are obtained from Eq. (5). Finally, a correction
step is implemented to correct the errors due to the use
of the expanded form of the scalar equations.

3.2 THE UNSTRUCTURED SEMEIMPLICIT ICE SCHEME USING A

FINITE VOLUME METHOD

The unstructured mesh is characterized with no
continuous grid line in the mesh. And it is constructed by
non-overlapping polygonal cells which can be used as a
basic element for applying a conservation law expressed in
the governing equations of the two-phase flows. Figure 3
shows an example of an unstructured grid with Cartesian
coordinates in two dimensions, where c¢l, ¢2 and ¢3 are

the neighboring cells of the cell c0, and S is the area
vector of the face f between the cell ¢0 and the cell cl.

To apply the semi-implicit ICE scheme to an
unstructured grid, it should be modified because the
conventional fully staggered-grid method cannot be used
and, instead, a non-staggered (cell-centered co-located)
scheme is adopted. All the variables except for the phasic
volume flow which is defined on each cell face are
located at the cell center. But the basic concept such as a
coupling among the energy, pressure and volume fraction
variations is applicable without any change.

At first, the phasic momentum equations in an

expanded form are integrated over the control volume cQ
in Fig. 3. The interface momentum transfers such as the
drag and virtual mass force in Eq. (2) are calculated
implicitly, whereas the other terms are treated explicitly.
This results in three coupled phasic momentum equations

with three unknown phasic velocities, 4%, Thus the
phasic velocity can be represented by

27:?0 = §Z,co + ﬂk,c()VP:o (6)

where Sieo includes the explicit convection, diffusion, and

body force contributions and Breo is the coefficient of the
pressure gradient. The resulting phasic velocity at the cell
center does not satisfy a mass conservation because the
old time pressure was used. Next, the new time phasic
velocities are calculated by considering the pressure
gradient term implicitly.

n+t

Upoo = §:,c‘0 + ﬁ/g_covpcn(:l )]

Subtracting Eq. (6) from Eq. (7) we obtain:

n+l

Upeo = 117;‘,50 + BrcaVOPeo ®)

where (=Pl —Pl) is a pressure correction which
will be determined so that the mass conservation is
satisfied.

The new time phasic velocity at the cell face f, E:T},
is needed for the calculation of the convective flux. This
is obtained by

n+ ex, 5 ¢ "5170 -
yk; = L‘kj- +ﬂk_f Por =~ Peo ‘ldf |\ ] 9
0

where Yk; and B., are the phasic velocity and
coefficient at the cell face / (between the cells c0 and
cl), respectively, # is an outward face normal vector,

and [dfml is the distance between the cell centers of ¢0

and cl. The phasic velocity at the cell face /', iy, is

obtained by interpolating the neighboring cell-center
velocities. In  order to hinder the  well-known
checker-boarding phenomena in a pressure field, a

3rd-order pressure damping term is added to the face
velocity in the context of the pressure-weighted
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interpolation method proposed by Rhie and Chow[16]:

upy =Eupr, +(1-Eupy,

(10)

P~ Plo -
=B A=+ EVPL, +(1-E VP!,
I:,f{ d?(”] &V, ( é) Px}

where § is a weighting factor. The cell face coefficient

Bis is simply an arithmetic mean of the neighboring
cells:

Bis=8Bio +(1-8)Bs ., (1n

As a result, the new time phasic velocity at a cell face
is represented by Eq. (9) as a function of the pressures of
the adjacent cells, which is similar to Eq. (4).

To obtain the convective fluxes in all the scalar

equations, the phasic volume flow at each cell face Yi/
is needed first. This is obtained by

n+ x| 6pc -6pc - a
EAVER VRV {dﬂ -8 (12)
ol

where Pi7 =#.7°S and S is the surface vector. Eq.
(12) corresponds to Eq. (4) in the staggered-grid scheme.

Thereafter, the five scalar equations are integrated over
cell c0. The convected properties are explicitly determined
and the phasic volume flow at each cell face is implicitly
treated. This process is similar to that in Section 3.1. The
resulting discretized equations are ordered in the following
sequence: (i) vapor energy equation, (ii) total liquid energy
equation, (iii) vapor continuity equation, (iv) entrained
liquid continuity equation, and (v) continuous liquid
continuity equation. These are linearized with respect to
five independent state variables (e, e, a, @, P) and
rearranged as

nb(cQ) . nb(cO) nh(ch)
- n+. 1
Ax=5+ Z;_g‘l’v,,- S SR IA (13)
J= J=l

Jj=1

where 4 : 5x5 coefficient matrix obtained from the
above-mentioned 5 scalar equations,
X solution vector,
)_c=c01(5ev,5e,,8av,6ad,6P),
5, g | and d: coefficient vectors (known),
nb(i): number of the cell faces of cell i.

J.J. JeonG - H.Y. Yoon - I. Kmm - LK. Park - HK. Cio

The unknown fluxes in Eq. (13) are substituted with Eq.
(12), from which a pressure equation for the cell cO can
be obtained. The remaining numerical sequence is the
same as that in Section 3.1. However, in the
non-staggered method, the face volume flux along with the
cell-centered velocity is updated by using the new time
pressure correction. Equations (12) and (8) are applied at
this stage. When all the cell-centered variables and
face-centered phasic volume flows are updated, the new
time solutions are obtained.

4. RESULTS OF PRELIMINARY CALCULATIONS

To examine the unstructured semi-implicit ICE scheme,
a one-dimensional pilot code was developed first and
numerical tests were conducted. Afterwards, a code using
a 3D unstructured grid was developed. In the two codes,
the physical models were considerably simplified and will
be improved further later. The preliminary results of the
two codes are presented in this section. It is noted that
the calculations have been done for a verification of the
numerical method from a qualitative point of view.

4.1 BOILNG FLOW IN A ONE-DIMENSIONAL VERTICAL PIPE

The flow in a vertical pipe of 0.1 m in diameter and 6
m in length was simulated. Initially the pipe was filled
with subcooled water. Slightly subcooled water at 2
temperature of 450.95 K was introduced at a velocity of
4.0 m/s into the inlet. A volumetric heat source was
imposed for the whole pipe; it was linearly increased from
0 MW/m® to 23.0 MW/m’ during the first 10 s and then
remained constant. The exit pressure was kept constant at
10 MPa. This problem was simulated by the
one-dimensional pilot code. Equal-length meshes were used
for 5 different calculations using 20, 40, 60, 120 and 240
meshes, respectively.

To reach a steady state, a null-transient calculation was
carried out for 40s. Fig. 4 shows the volume fraction
behaviors of the vapor, continuous liquid, and entrained
liquid at the exit. Initially the flow was single-phase liquid
flow and, from S5s, it changed into a two-phase flow. At
about 17s, the calculation reaches a steady state with a
three-field flow. Thus, it can be said that flow transitions
are well represented by this numerical scheme. For this
calculation, 40 meshes (with 0.15 m/mesh) were used.

Fig. 5 shows the steady-state axial void distributions
with different meshes, which clearly illustrate a mesh
convergence. The conservations of the mass and energy
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Fig. 5 Steady-state axial void distributions.

were also confirmed by comparing the inlet and exit flow
conditions.

4.2 TWO-DIMENSIONAL SINGLE-PHASE WATER FLOW

To wverify the unstructured numerical scheme, a
single-phase water flow in an X-Y plane (0.1 m x 0.4 m)
was simulated by using a structured grid with 880
rectangular meshes and an unstructured grid with 954
triangular meshes, which are depicted in Fig. 6. The
pressures at the inlet (bottom) and the exit (top) were
1,000,020 Pa and 1,000,000 Pa, respectively. The water
density was 943.0 kg/m’ and the viscosity was artificially
increased to 0.1 N-s/m’ to produce a laminar flow,

Initially the flow was stagnant and a null transient
calculation was carried out to attain a steady state. Figure
7 shows a comparison of the steady-state Y-direction
velocities at y=0.3 m. Two solutions in Fig. 7 are very
similar to each other. This clearly shows that the
unstructured semi-implicit ICE numerical scheme works
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Fig. 6 2D structured and unstructured grids; 880 rectangle and
954 triangle meshes were used, respectively.
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Fig. 7 Comparison of the Y-direction velocities at y=0.3 m.

well for both the structured and unstructured grids.

43 BOILNG FLOW IN A THREE-DIMENSIONAL VERTICAL
Ducr

For a verification of the 3D unstructured numerical
scheme, boiling in a vertical pipe of 1 m in diameter and
2 m in height was simulated. Figure 8(a) shows the
unstructured grid using the Voronoi polygons for the X-Y
plane. For the axial direction, 10 equal-length meshes were
used. The total number of cells is 1110. A volumetric
heat source was given for the whole pipe; linearly
increased from 0 MW/m’ to 20.0 MW/m’ during the first
10s and then remained constant. Subcooled water was
introduced to the inlet at a constant velocity of 0.1 m/s.
The exit pressure was maintained at 1.0 MPa.

Fig. 8(b) and (c) show the steady state results at 25s;
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the void fraction and the vapor-phase velocity fields due
to a boiling were predicted well. The conservation of the
mass was also confirmed as shown in Fig. 9. The mass
flow difference in Fig. 9 is defined as the mass flow rate
difference at the exit and the inlet divided by the inlet
mass flow rate. At a steady-state flow, the mass flow
difference should be zero. At the beginning of the
transient, it was nearly zero and, at about 6s, increased a
lot because the exit flow rate suddenly increased due to a
boiling in the duct. However, at last, the mass flow
difference becomes below 10 %. The results of this
calculation show that the semi-implicit ICE algorithm
based on the unstructured grid works well qualitatively
and the mass is conserved.

4.4 FLASHING IN A HORIZONTAL PIPE

A flashing is an important physical phenomenon in a
nuclear system or a component analysis. To assess the
developed code’s capability to predict a flashing, a
conceptual problem was established. A 2-dimensional plane
of 0.1 m x 2 m was considered. This plane is modeled
with 250 rectangular cells as shown in Fig. 10(a). Each
mesh is 0.02m x 0.04m. The left and the right ends were
designated as the inlet and the exit, respectively. The inlet
velocity was kept constant at 4.0 m/s. The inlet water
temperature was 450.0 K. The exit pressure was linearly
decreased as a function of the time during the first 10s
from 1.0 MPa to 0.854 MPa, and then, remained constant,
The saturation temperatures at 1.0 MPa and 0.854 MPa
are 453.034 K and 446.270 K, respectively. Therefore the
flow was initially subcooled, but a two-phase flow is
expected later due to a flashing.

During the first 10s, the flow in the 2D plane
experienced transitions from a single-phase water to a
two-phase mixture flow by a flashing. This transient
process was predicted well. At 13s, the calculation reached
a steady state. Fig. 10(b) through 10(e) show the pressure,
void, and x-direction liquid and vapor phase velocities at
13s, respectively. The inlet pressure was predicted to be
0.88 MPa when the pressure at the exit was given at
0.854 MPa. This means the superheated water is injected
into the inlet since the saturation temperature at 0.88 MPa
(ie. 447.55K) is lower than the inlet temperature. Both
the void fraction and velocity increase along the flow path
to the exit because a flashing occurs over the entire
region. In all the computational cells, the liquid was
slightly superheated and the steam was nearly saturated.
These results are physically reasonable.

This problem was simulated again by using a

(a) Top view of the unstructured grid

0.978
0.733

0.489

%ﬁ%ﬁ 0.244
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(c) Vapor-phase velocity
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Fig. 8 The unstructured grid and the results of calculations.
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Fig. 9 Behavior of the mass flow difference, (Mo = Minser )/ i

one-dimensional system code, MARS[4]. An input model
with 20 equal-length meshes was used for the MARS
calculation and the same boundary conditions were
specified. The results were very similar to each other. In
the 2D calculation, the steady-state void fraction at the
exit was 0.604, whereas it was 0.585 in the MARS
calculation. This difference is due to the differences in the
geometry input model and the interfacial drag model that
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Fig. 10 Calculation of the flashing in a horizontal pipe using a 2D grid.

strongly affects the relative velocity and, in turn, void grid for this problem. The entire volume was modeled
fraction. with 600 cells with a size of 0.0lm x 0.0lm. The left
and the right ends were designated as the inlet and the

4.5 CAVITATION WITH A SUDDEN CONTRACTION exit, respectively. The water velocity at the inlet was 3.0
A cavitation with a sudden contraction was simulated m/s and the pressure at the exit was 1.0 MPa. The inlet
by using a 2D structured grid. Figure 11(a) shows the 2D water temperature is 453.0 K, which is slightly lower than



=

2/ =T M RS K]

1.]. Jeong - HY. YooN - J. Kim - LK. Pagrk - HEK. Cio

[DEK1)

B

B b

(a) Calculation mesh

1.0485E+06
1.04083E+00
1.03315E+06
1.02548E+06
DI781E+06
o1,

0.2 03

(d) X-direction liquid velocity

035

0.00899832
0.00830814
0.00761397

= 0.00892179

0.00138436
0.000592179

PSR VR S S SO T SO SR N S N TR S
0.1 0.2 03
X

() Void distribution

0.2I — 0.3
X

(e) Y-direction liquid velocity

Fig. 11 Calculation of the cavitation with a sudden contraction using a 2D grid.

the saturation temperature at 1.0 MPa (i.e., 453.034 K).
Fig. 11(b) through 1i(e) show the steady-state results.
As can be seen in Figs. 11(d) and 1l1(e), the flow is
accelerated at a sudden contraction. Thus, the pressure
near the walls close to the throat decreases to 0.96 MPa,
which is lower than the exit pressure. The temperatures in
these areas are higher than the saturation temperature. This

results in a local cavitation, and thus, steam generates near
the walls. The maximum void fraction was predicted to be
about 0.01. These results are also physically reasonable.

5. CONCLUSIONS

A 3D hydrodynamic solver for a transient two-fluid



Fhmomnamic Socviar ror A Thansiar, Two-Tuum, T Fiap MoDEL -+

A28 A43. 2007. 12 / 53

three-field model has been developed, which is based on
an unstructured non-staggered grid. For the numerical
solution scheme of the solver, the semi-implicit ICE
scheme was applied for an unstructured grid. To examine
the unstructured semi-implicit ICE scheme, one-dimensional
and three-dimensional pilot codes were developed. These
were verified against a few conceptual problems. The test
calculations were carried out for both structured and
unstructured grids including 1D, 2D, and 3D grids. The
results show that the numerical scheme is applicable for
the prediction of phase changes and flow transitions due
to a boiling and a flashing. The strong coupling between
the pressure and void fraction changes was predicted well.
The conservations of the mass and energy were also
verified. Thus, it is believed that the unstructured
semi-implicit [CE scheme can be utilized as a
hydrodynamic solver for the 3D component of a system
code and component-scale analysis tools.

Qualitative  assessments  against  complicated 3D
two-phase flows are going to be conducted soon.
Thereafter, physical models including a turbulence model
will be implemented and a systematic validation will be
carried out. Of course, further improvements to the
developed numerical scheme are also necessary for an
enhanced accuracy and computational efficiency.
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