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A Delay and Sensitivity of Delay Analysis for Varying Start of
Green Time at Signalized Intersections: Focused on through traffic
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Abstract

The linear traffic model (Vertical queueing model) that is adopted widely in traffic flow estimation assumes that all vehicles have the
identical motion before joining a queue at the stop-line. Thus, 2 queue is supposed to form vertically not horizontally. Due to the simplicity
of this model, the departure time of the leading vehicle is assumed to coincide with the start of effective green time. Thus, the delay
estimates given by the Vertical queueing model is not always realistic. This paper explores a microscopic traffic model (a Kinematic Car-
following model at Signalised intersections: a KCS traffic model) based on the one dimensional Kinematic equations in physics. A
comparative evaluation in delay and sensitivity of delay difference between the KCS traffic model and the previously known Vertical
queueing model is presented. The results show that the delay estimate in the Vertical queueing model is always greater than or equal to the
KCS traffic model;, however, the sensitivity of delay in the KCS traffic model is greater than the Vertical queueing model.
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1. INTRODUCTION

The traditional linear traffic model(Vertical queueing
model) that is adopted widely in traffic signal control
represents all vehicles have the same trajectory before
joining a queue at the stop-line. Thus, a queue is
supposed to form vertically at the stop-line without
occupying any space on the link. Due to the simplicity of
this model, all vehicle motions are identical. In this
model, the departure time of the leading vehicle is
assumed to coincide with the start of the effective green
time(Clayton, 1940; Webster 1966; Allsop, 1970) and
then departure times for the successive following
vehicles are estimated in accordance with the saturation
departure time at the stop-line. The delay estimates given
by the Vertical queueing model are not always realistic,
because this model does not consider any braking motion
until the stop-line. Namely, it is more focused on the
queue delay rather than the approach delay. The
TRANSYT(Roberson, 1969) uses Vertical queueing
concepts in fixed-time signal optimization. Also, in
traffic-responsive signal control, Miller (1963), Gartner
(1983), and Heydecker (1990) use constant mean travel
time from the detector to the stop-line, and some others
like Bang (1976) uses occupancy rate of the loop
detector and the average speed to estimate arrival time at
the stop-line.

In traffic-responsive signal control, the motion of each
vehicle from the upstream detector to the downstream
stop-line is needed for full interpretation of the detector
outputs for performance evaluation. Hence, the concepts
of Kinematics in physics are applied to derive a
Kinematic Car-following model at Signalised
intersections (a KCS traffic model). The model
developed in this paper requires one upstream detector,
the position of detector is not an issue in this research.
According to this rhodel, departure times of all detected
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vehicles at the stop-line, and also their delays are
estimated on the basis of the on-line detector data. The
model is developed to represent the individual vehicle
motion in relation to the general car-following concept.
Thus, it can be applied in the dynamic signal
optimisation at a microscopic level (Ahn, 2004).

In the following section, the formulae are derived for
two different vehicle groups: a trajectory equation for the
leading vehicle and a trajectory equation for the
following vehicles, in which the motion of vehicles
responding to the current signal indication is formulated
analytically as a function of the start of green time and
the detection time. The delay and sensitivity of delay
difference between the simpler Vertical queueing model
and the more detailed KCS traffic model are compared.

2. KINEMATIC EQUATIONS IN PHYSICS

Kinematics is the study of motion irrespective of the
forces; it deals with the mathematical description of
motion in terms of position, speed, acceleration '(or
braking) and time. If any three of those variables are
known, then the fourth variable can be calculated by
using Kinematic equations. According to these concepts,
we can describe the motion of vehicles in the vicinity of
signalised intersections. If a vehicle is moving, the
speed v is defined as the displacement of the vehicle
divided by the time over which the displacement occurs.
Furthermore, acceleration rate a refers to the rate of
change of speed over time, which is defined as the
change of speed divided by the change of time. The
acceleration is equal to the second derivative of x with
respect to time ¢ :

d_dx

== 1
dt dr M
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By using the Equation (1), the speed equation as a
function of time, the position equation as a function of
speed, and the position equation as a function of time are
obtained as follows:

vi=v,+a(i; —t) )
X, =X +v’2r_vi2 3
f T 2(1 ( )
xf=x,.+v,.(tf—tl.)+—623(tf—ti)2 @)

where v is the initial speed, Vs is the final speed, xi is
the initial position, and * is the final position.

3. NOTATION

The following notations will be used for the trajectory
of the leading vehicle » =1 and the following vehicles
n{ 2<n<N), where N is the serial number of the most
recent detected vehicle. Let
a be the acceleration rate ( a >0),
b be the braking rate ( » >0),
Vo be the free-flow speed,
T, be the start of green time(including the reaction time),
Vs be the speed of the leading vehicle 7 =1 at time %,
X, be the position of the leading vehicle » =1 at time te>
X, be the position of the detector ( X, <0),
X. be the position of the stop-line ( x,=0),
X, be the maximum boundary of downstream at which
any delayed vehicles can regain the free-flow speed
X, =X, +v2/2a),
X, be the maximum boundary of upstream
(X =X, -V} /12b),
ti be the time at which the vehicle n is detected at
position X,

Va be the speed of the vehicle » at time which it

detected at position X,

X¢ be the braking position of the vehicle » (X7 = X7
— L, where L is the safety margin),

5 be the time at which the vehicle » starts to brake,

Vs be the speed of the vehicle » at position Xz (vi = wp)

t. be the time at which the vehicle n starts to
accelerate ( 2<n=<N ),

vz be the speed of the vehicle » at time which the
acceleration starts( 2<n<n ),

X2 be the position of vehicle » starts to accelerate
(2<n<N),

X? be the position at which the vehicle n stops

completely after braking ,

be the time at which the vehicle » stops at

position x7 ,

X, be the position at which the vehicle » regains the
free-flow speed, if it has been delayed (X7 < X,),

t, be the time at which the vehicle » regains the free-

flow speed at position x*,

be the time at which the vehicle » crosses the stop-

line X, ,

vi be the speed of the vehicle » at time which it
crosses the stop-line x, ,

4. KINEMATIC TRAFFIC MODEL DEVELOPMENT

In this section, trajectory equations as a function of
start of green time ¢, are proposed in two vehicle groups:
a trajectory equation for the leading vehicle and a
trajectory equation for the following vehicles. This
model] assumes a constant acceleration rate and braking
rate, no overtaking is allowed and no vehicle exceeds the
free-flow speed under any circumstances. Here, the start
of green time ¢, is defined as the beginning of the green
time plus a reaction time 7, Gipps (1981) used 7 = 2/3
seconds.
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Fig 1. Trajectory of the leading vehicle in relation to varying start
of green time %

4.1 Trajectory Equations for the Leading Vehicle

As can see in Fig 1, the motion of the leading vehicle
at signalised intersection is affected by the current signal

#
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indication. In respect of the start of green time ¢, , the
motion can be classified broadly into four regions: free-
flow, braking (or braking and stopping), acceleration and
free-flow. If current signal is green, the leading vehicle
will cross the detector with free-flow speed and then
reaches stop-line without experiencing any delays.
However, if the signal is currently red, the vehicle from
the detector can travel up to the braking position with
free-flow speed, and on reaching that point the vehicle
has to start to brake in order to stop safely at the stop-
line. Meanwhile, if the signal changes to green, the
vehicle will start to accelerate until it regains the free-
flow speed; otherwise, the vehicle has to go through
stopping until the next green starts. In this way, we can
identify that the vehicle will pass the stop-line either at
the free-flow speed or under. For the leading vehicle n
=1, three different trajectories are considered as follows:

If ¢, <t :maintain free-flow speed (see Fig. 1a),

If ¢; <t, <t : free-flow—braking—acceleration—

free-flow (see Fig. lb),

If t,>1, :free-flow—braking—stopping— acceler-

ation—free-flow(see Fig. 1c).

The motion of the leading vehicle from the detector
position up to the braking position is unaffected by the
current signal indication, thus it maintains free-flow
speed. For the leading vehicle n=1, the braking position
X} , the braking time #; and the stopping time 7 are
calculated as follows:

X>=—v}12b )
n n X
n=t ——;lb—v—" ©)
[

n n R 4n Y, X n_ VY
0=t +Ay —td+2—°b—;(;i(where At,,—;") @]

When the vehicle has reached its braking position, its
further motion is determined by the current signal
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indication at the intersection. As can see in Fig. 1, there
are three different trajectories to be considered with
respect to the start of green time ¢, for the vehicle n=1:

If ¢

g

<ty then v, =v,, X, =X, +v,(t, —1}),

t =t,and X =X, 8)
Ift,:'<tg<t;' then

v, =V, —b(t, — 1),

8

_ n n b nN\2
X, =X, +v0(tg—tb)—5(tg—tb),
no_ b n
t; =t +_(t,—t;)and

byt -y - @ oy

If ¢, starts after the vehicle has stopped (¢, > 1),
we can simply assume that

X' = X"+v0(

2
v,=0, X,=0, !=1,+ 2 and X;:%’OE (10)

Finally, for the leading vehicle n=1, the crossing time
t; and its speed v" at the stop-line can be obtained by
comparing the fixed position X_ and the varying position
X

If X7 < X,, which means that the vehicle is crossing
the stop-line with free-flow speed, then

= and v; =V,
Yo

t=t -

k) v

)

If X; > X, which means that the vehicle is crossing
the stop-line during the acceleration, then

Jv -2aX, and ¢ =ttt

-2aX, - e (12)

4.2 Trajectory Equations for the Following Vehicles

The variables estimated for the leading vehicle are
used as parameters for the following vehicles trajectory

ro
H
H
Hu
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lok

in the following section. The basic concept we use in the
following calculations are the following vehicles cannot
depart the downstream free-flow position X, with less
than the minimum headway. Once we have characterised
the full trajectory of the leading vehicle n=1 as a
function of the start of green time ¢, , the trajectory of all
successive following vehicles n=2,3,--- N can be
calculated directly based on the motion in front.

As can see in Fig 2, when the following vehicle n=2
crosses the detector at time £},, the first order of task is
finding the possible departure time ¢, = Max[ ta v]
at position X,, here £"=7, +1/s (Where s is a saturation
flow) is the earliest departure time at position X, and
tiv =13 +(Xy — X,)/ v, is the free-flow travel time
from the detector to the position ¥,. By comparing
variables 7" and 7, we can decide whether or not the
following vehicle will be delayed. If 75, >7,, the
detected vehicle is identified as undelayed so it can reach
the position X, from the detector with free-flow speed.
Thus, it is not necessary to find acceleration variables.
However, if .., < v, the vehicle is identified as delayed,
then we need standard motion test to find acceleration
variables, in which we can test whether or not any
stopped lost time due to a queue is involved. Here, the
standard arrival time is the longest approach time from
the braking position X; to the position X, supposing that
the vehicle has not stopped. The braking position is
calculated by of adding minimum safe spacing L. The
final information we are seeking for each following
vehicle 7(2 < n < N) isits crossing time £, speed v7
at stop-line X, and departure time 7; at position X, :
the time ¢ will be used to estimate the number of
vehicles that can pass the stop-line if the green is
extended by a certain control decision time, and ¢} will
be used to estimate its delays. In this analysis, the final
information we are seeking for each following vehicle
n(2 <n < N)isits crossing time ¢/, speed v at stop-
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Fig 2. A Standard motion test for the following vehicles

line X, and departure time £, at position X, : the time

will be used to estimate the number of vehicles that can
pass the stop-line if the green is extended by a certain
control decision time, and 7, will be used to estimate its
delays. The calculation algorithm for the following
vehicles trajectory is as follows:

Step 0: (Leading vehicle trajectory)

Identify the leading vehicle trajectory n=1 with
respect to the current signal indication, and all identified
variables are used as parameters in the following steps

= if N=1, stop processing (no following vehicles)

Step 1: (Departure time at X, )

Find the earliest departure time #"and free-flow arrival
time 7y, atposition X, then the departure time will be
7, = Max|t", 7a,], where i"=r."+s and 75, =]
+(X = X))/ v,

Step 2 : (Motion definition for undelayed
case or delayed case)

Find the expected motion of the each following
vehicle:

2-1)If ¢z, >, which corresponds to undelayed
motion, then standard motion test is not required

2D 1f 14, < t, which comresponds to delayed motion,
then standard motion test is required
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Step 3 : (Braking position and time)

X; = X;”'~ L(t; is only possible to find when
X} 2 X,; otherwise, out of range)

From Step 2, if the motion is identified as an
undelayed case and:

If (X, 2X,), then #, =1 +(X; —X,)/v,,

Else, % is unknown

= go to Step 4 to find the variable of crossing time
to the stop-line.

From Step 2, if the motion is identified as a delayed
case :

If X, <X, <X, then =t +(X; —X)/v,

It Xo <X; <X, then

ty =t —(vy—~vy +2b(X; - X))/ b
=> g0 to Step 5 to find additional variables.

Step 4 : (Crossing time to the stop-line for
undelayed vehicle)

The crossing time % at stop-line X,can be calculated
by using a free-flow motion equation, thatis f, =1I; +
(X, —X,)/v,

= if n< N, go toStep 1; otherwise, stop processing

Step 5 : (Standard motion test for delayed
vehicle: halt case or not-hale case)

The standard motion test is only necessary if the
vehicle is identified as delayed and X, = Xs

From the braking position standard motion test is
needed to find whether or not it will come to a halt

5-1) The standard motion arrival time, that is

iy, =t +v(a+b)/2ab+ (X, — X/,

5-2) Motion definition: halt-case or not-halt case

If £7, <1, the motion is identified as a halt-case, then
the stopping is involved

If 77, 27, the motion is identified as a not-halt case,
then the stopping is not involved

Step 6 : (Acceleration position, time and
speed variables for delayed vehicle)

6-1) For a halt-case, acceleration position is equal to
the stopped position, then

2

X, = X;(where X7 =X, +;—2), vi=0 and

t: =t—vn__vl_(Yv_X:)
2a vy

6-2) For a not-halt case, acceleration starts meanwhile
of braking, then

=g (X; - Xv)+2v0(tv ~1,)
(ab+b")/2a

b
XI =X +v, (¢! —t;‘)—z(t; -ty and

vi=v,~ bt —t,)

Step 7 : (Position and time of regaining the
freeflow speed for delayed vehicle)

If X; 2 X», the time v and the position X, can be
calculated by using acceleration variables; otherwise,
they can be calculated corresponding to the departure
time % at Xu

DI (X 2X0), £ =10+, —vi)a and
Xv"=X;’+v;’(tf—t:)+g(tv"—t;’)2

17D (X, < X4) which s defined as a out of boundary
case, then

oo +\/2[(Xd B ORGP
a

a i n
X=X, +Vi(t —t;’)+—2—(tf -
where the estimated speed of Vi = Yo —alt; = £;)

Step 8 : (Crossing time and speed to the
stop-line for delayed vehicle)
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The departure time #; at the stop-line X can be
calculated by comparing position variables X and X"

8-1)If( X! =X, )and

If X <X, than £ =¢'—(X"/v,)

If X">X,, than t" =" +(v" —v")/a,

= J0" Y = 2ax"

8-2)If (X; <Xs)and
If X)<X,than ¢ =1’ —(X/v,)

where v}

If X;>X, than ¢’ =27 +(v,—V")/a,
=4[(v;)2 -ZaXd

=if n< N gotoStep 1; otherwise, stop processing.

where v
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Fig. 3 Trajectory of following vehicles

As can see in Fig, 3a, vehicles are generated from the
position X . that is located further upstream than the
detector. There are four different sets of motions have
been identified at the position of the detector during one
green period. Position and variables are expanding
backwards from the first vehicle” s trajectory through the
upstream of the detector. In respect of the start of green
time, any detected vehicles until the time Al have
crossed the detector with free-flow speed, the times
between Al and A2 vehicles have crossed it while
braking, the times between A2 and A3 vehicles have
crossed it while accelerating, and any following vehicles
after the time A4 will cross the detector with free-flow
speed. Presumably, the time A4 is the queue (or delay)
dissipation time of this stage.

5. DELAY AND SENSITIMITY OF DELAY ANALYSIS

In this section, the sensitivity of delay difference
between the Vertical queueing model and the KCS traffic
model is discussed in relations to varying start of green
time ¢, . The delay in the Vertical queueing model is
identified as the time difference between the queue
departure time and its free-flow travel time to the stop-
line. In this model, the departure time of the leading
vehicle is assumed to coincide with the start of the
effective green time and queue forms vertically at the
stop-line without occupying any space on the link. The
delay in the KCS traffic model is calculated on the basis
of the time #, in accordance with vehicular characteristic
variables, such as, acceleration rate ¢, braking rate p,
free-flow speed v, and physical queue length L.

5.1 Detay and Sensitivity of Delay for the Leading Vehidee

As can see in Fig. 4, the delay in the Vertical Queueing

sz =28
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model is identified as the time difference between the
start of effective green time ¢, + [ (where [ =v,/2a)
and its free-flow travel time to the stop-line 7z, = £ —
X, /v, The Vertical queueing model delay for the
leading vehicle n=1 with respect to the time ¢, is
expressed as D, (¢,), which are calculated as follows :

If (t, +1, <ta.), than Dy(z,) =0 (13)

If (1, +1, > 4,), than D}(z,) = (¢, +1,) — 72 (19)

osition{m
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Fig 4. Delay for the leading vehicle (Vertical queueing model)

X,

(b) t,+1, > 125,

As can see in Fig. 5, if ¢, starts before the free-flow
travel time minus the start lag, no delay is incurred in the
Vertical queueing model, and the resulting sensitivity is
0. However, from that time if 7, is increased by an
amount €, delay is increased by an identical amount €, so
that the resulting sensitivity is 1. By differentiating the
delay Equation 13 and 14 with respect to the time ¢, ,
we can get the sensitivity of delay as follows:

0, <tas—1,

Diay=1 " _ as)
1tg >tas— lx
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Fig 5. Delay and Sensitivity of delay for the leading vehicle in
varying time g,

As seen in Fig. 1, the delay for the KCS traffic model
is calculated on the basis of the time ¢, in accordance
with vehicular characteristic variables, such as,
acceleration rate, braking rate and free-flow speed. The
delay for the leading vehicle n=1 with respect to the
time 7, is expressed as Dj(t,), which are calculated as
follows:

If 1,<t,,than Dj(z,) =0 (16)

If 1, <t, <t, than

n 2
Dyt =i -ip) - B2 B ey (1)

Vo Vo

If f,>1,,than



" oy, Vo, X
DK(tg)=(tg—td)+i+70d- (18)

As can see in Fig. 5, if ¢, starts before braking, no
delay is incurred and the resulting sensitivity is 0. If ¢,
starts between braking and stopping, the delay increases
quadratically, and the resulting sensitivity increases
linearly. Once the vehicle has stopped, if ¢, is increased
by an amount €, delay is increased by an identical
amount &, so that the resulting sensitivity is 1. By
differentiating the delay Equations 16, 17 and 18 with
respect to the varying time ¢, , we can get the sensitivity

of delay as follows:
If 7,<1,, than Di(t)=0 (19)
If 1, <t, <t, than
v, «_ (ab+b*) .
Dty =45 —t, = 1) (20)
If ,>1,  than Dj(z,)=1 @n

The maximum sensitivity of delay for the leading
vehicle n=1in the Vertical Queueing model is always 1.
In contrast, the maximum sensitivity of delay in the KCS
traffic model is 1+(b/a) that is obtained by
differentiating the ¢! in Equation 9 that obtained when

1
tg—tq-

5.2 Delay and Sensitivity of Delay for the Following
Vehicles

In this section, the following results are based on the
simulation. Two different cases of traffic are considered:
alow density case and a high density case. In the present
examples, the maximum number of vehicles that can be
held in the queue with this given condition is 8-vehicle.

The detector is located X, = -50m from the stop-line,
and the minimum spacing of each following vehicle is

0000000000000 0000C000000000000000000000000C000000000000ACCO000000D0000000000000C0O0

Table 1. Detection time generation : using shift
exponetial distribution of headways

Vehicle n =
1 2 31415 6 | 7 8

Lowdensiy| U | - |0613(03210824/0569|0851 (0312 067
a=05 | H| - [397]527]338|412332(533 |37
h=30 | 12700 | 40 | 93 127|168 | 201|254 | 292

High density U 0.613/0.321|0.824|0.56910.851 (0311|0671
a=09 | H| - [254|326(221|262|218|329|244

h=20 | 100 | 25|58 80 |106|128]161]185

L= Tm, saturation departure time is 1.8 sec/vehicle
(2,000 vehicles/hour) and two cases of vehicles are
generated based on shifted exponential distribution of

headways H, which is given by

H=h,— %ln(u) 22)

where
u :is the random value generation, in which variables
are generated with equal probability between [0, 1],
by - i the minimum gap of following
(hy 27T+ L/v,, where 7 is 0.67sec),
@ :is the density parameter (the bigger ¢ generates
greater flow).

Using Equation 22, we can generate the detection time
of vehicles without causing any headway violation. The
time : £; canbe given by ¢ = 7'+ H(n > 2).

Based on Table 1 data, the sensitivity of delay for 8-
vehicle is tested with respect to the variations in the start
of green time: in the range of 7, =0~ 30 sec and ¢, is
incremented by 0.1 sec.

As can see in Fig. 6, let T, be the time at which the
total delay of eight vehicles for the KCS traffic model
and the Vertical queueing model become same, namely
T, =1, , where T; is the time at which total delay
becomes increasing linearly. If ¢, starts before T},
which means that all eight vehicles have not delayed yet;
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Fig 6. Sensitivity of delay for the following vehicles in varying time ¢,

in this range, we can suppose that some vehicles may go
through the stop-line without experiencing any delay,
thus the sensitivity fluctuates. However, if ¢, starts after 7, ,
which means that all eight vehicles have been delayed,
the sensitivity of delay in this range with respect to ¢, is
equal to the total number of delayed vehicles. The
sensitivity of delay for the Vertical queueing model is
equal to the number of delayed vehicles in the time
range. But it differs for the KCS traffic model, if ¢, starts

before %, in some time range it shows a sensitivity
higher than the total number of delayed vehicles. For the
high density case simulation (see Fig. 6b), the Vertical
queueing model delay is greater than or equal to the KCS
traffic model delay. T;=5.7 sec and 77=7.1 sec. At time
t, = 5.5 sec, the KCS traffic model shows a sensitivity
of delay Dx= 17.28, and the Vertical queueing model
shows D, = 6, which is equivalent to numbers of delayed
vehicles. At this time, the sensitivity of delay for the



KCS traffic model is about three times greater than for
the Vertical queueing model. At time ¢, = 7.1 sec, the
sensitivity of delay for both models is equal to 8. From
that time, we can see that all vehicles will experience
some delay:

6. CONCLUSIONS

As explored in this paper, the delay estimated in the
Vertical queueing model and the KCS traffic model
differs around the time of the green start, but so long as
there is a queue the delay estimates from these models
are identical. With respect to variations in the start of
green time and provided that the braking rate exceeds the
acceleration rate, the delay estimated in the Vertical
queueing model is always greater than or equal to the
KCS traffic model; however, the maximum sensitivity of
delay in the KCS traffic model is greater than that in the
vertical queueing model. The KCS traffic model
proposed has some attractions compared to the simpler
Vertical queueing model. The delay estimate in the KCS
traffic model is on the basis of the vehicular
characteristics, such as vehicle length, acceleration rate,
braking rate and free-flow speed; however, the Vertical
queueing model takes adjusted time parameter of the
start of effective green time. Thus, the delay estimated
from the Vertical queueing model is not realistic and
always greater than or equal to the KCS traffic model.
From these results, it is clear that the leading vehicle
trajectory is the most important determinant for
estimating the motion of vehicles at signalized
intersections. Namely, the delay can be minimized in
signal operation, if the start of green time begins before
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the vehicle starts to brake. The work described so far in
this study is only at on early stage, in the sense that more
work should be done for estimating the motion of

vehicles in various intersection configurations.
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