International Journal of KIMICS, Vol. 5, No. 4, December 2007

369

Adaptive Partitioning for Efficient Query Support

Hong-won Yun, Member, KIMICS

Abstract—RFID systems large volume of data, it can
lead to slower queries. To achieve better query
performance, we can partition into active and some non-
active data. In this paper, we propose two approaches of
partitioning for efficient query support. The one is
average period plus delta partition and the other is
adaptive average period partition. We also present the
system architecture to manage active data and non-active
data and logical database schema. The data manager
check the active partition and move all objects from the
active store to an archive store associated with an
average period plus data and an adaptive average period.
Our experiments show the performance of our
partitioning methods.

Index Terms—Partitioning methods, Data archiving,
RFID data management, Temporal data modeling.

L INTRODUCTION

RFID (Radio Frequency Identification) technology can
be used to improve the efficiency of business processes
by providing the capability of automatic identification
and data collection. It can achieve greater visibility and
product velocity across supply chains, easier product
tracking and monitoring and much more labor cost.
Despite the diversity of RFID applications, RFID data
have to be considered in RFID data management systems
[1-4]. In current RFID applications while the accuracy of
current RFID sensors is improving, there are erroneous
readings. Such duplicate readings and missing readings
data are filtered semantically [5,6,12].

RFID data are generated quickly and accumulated for
querying. Very large data volume need to store RFID
data and requires a scalable storage scheme to assure
efficient queries and updates. Handling historical data we
had initially raised about data volume generated by an
RFID system leads to a second and equally important
issue [7-9]. If just one of your customers relies on RFID
and asks you about a specific item by unique ID then the
system has to be able to get the information by that
identification. Equally important are cases where you
have product recall or returns management [4].

Manuscript received November 23, 2007.

Hong-won Yun is with the Department of Information
Technology, Silla University, Busan, 617-736, Korea
(Tel: +82-51-999-5065, Fax: +82-51-999-5657, Email:
hwyun@silla.ac.kr)

RFID systems generate large volume of data with fast
reading speed. Very large volume of data can cause of
slower queries and updates. Generally RFID data have
limited active life span during which the data are updated
and queries such as tracking and monitoring [1,12-14].
An object starts from the time when it is first tagged,
moved, read and ends when the object is sold to
customers. RFID data can be partitioned into active data
and non-active data. This partitioning can perform most
queries and do updates of data efficiently.

In this paper, we propose two approaches of
partitioning for fast querying speed with RFID data
streams. The rest of the paper is organized as follows.
Section II presents the RFID system architecture to treat
large volume of data and logical database schema. In
Section III we propose two partitioning methods that are
the average period plus delta partition and the adaptive
average period partition. Section IV shows the
experimental results. Finally we conclude our study in
Section V.

II. SYSTEM ARCHITECTURE

A. RFID System

The RFID system in this paper consists of the
following components: RFID tags, Readers, Stream
Manager, and Data Server. The Data Server includes
Data Manager, Data Store, Data Archive, and
Product Data Store. Each component’s function is as
followings.

RFID tags. RFID tags can be attached to or
embedded in a physical object to be identified. They
store product-item information such as manufacturer,
product lot, size, production date, expiration date, etc.
RFID tags come in a large variety of designs and
have many different functional characteristics.
EPCglobal classifies RFID tags into 5 classes. We
use Class 0, 1, and 2 tags in this paper.

RFID readers. RFID readers are electronic devices
that emit and receive radio signals through the
antennas coupled to them. Readers are responsible
for the information flow between the tags and the
Data Server via the Stream Manager.

Stream Manager. Stream Manager receives data
from readers, filter the data, and send the data to the
Data Server. Each Stream Manager can connect to
multiple readers and process the data generated from
the readers. The data filtering is essential function of
the Stream Manager. The filtering functions are to
preliminarily screen raw reading data and can be

370

Hong-won Yun : In Adaptive Partitioning for Efficient Query Support

removing duplicate data, error detection, and so on.

Data Manager. Data Manager is at the core of an
RFID system. It is responsible for expressive data
modeling, querying including object tracking and
monitoring, and data migration. Based on the
temporal data model, common RFID queries can be
effectively supported. The data migration is its key
function to move RFID data from Data Store to Data
Archive in this paper.

Data Store. Data Store stores active RFID data for
querying including object tracking and monitoring
and provides logical database schema.

Data Archive. Data Archive is non-active data
storage. Non-active data are moved and archived into
historical partitions.

In this paper, this RFID system architecture is
designed essentially for active and non-active data
management shown in Fig.1.

External Applications

Data Manager

7)) ‘ Application ONS f£ 'g }
< Interface Interface o2
Product Data Store 6
2
Data ‘ Data w
Store | Archive .f%
- e

?

Stream Managers

—

A A
T T
‘ Readers ‘
A A
. , T
| RFID tag L RFIDtag]
[.

Fig. 1 RFID system architecture

B. Logical Database Scheme

This paper focuses on a single loop supply chain
in the retail industry to explore issues related to the
integration of RFID system and the EPC Network
between different partners. The EPC code offers the
means for unique identification of any object
throughout a supply chain. Once an EPC code is
incorporated into an RFID tag and attached to a
physical object, the object become unique in the
world. Assume that we record each item movement
with a tuple of the form, (EPC, name, time) where
EPC uniquely identifies each item. Among all the
data, they dynamically interact with each other and
generate business logic. These interactions generate
events and states changes. Such changes need to
develop new data model that may provide fast
response to such queries.

There can be many entities in RFID applications.

We consider as fundamental entities in RFID appli-
cations. These involve objects, readers, loca-tions,
and transactions. Relationships are generated when
entities interact with each other. Generally entities
are related to static data such as object name,
location information. Relationships are related to
dynamic data such as location and changes of objects.
The temporal data are directly related to these RFID
applications. There are two types of temporal ele-
ments that are event times and state times. We use
two attributes event start time and event end time are
associated with a static data; and state start time and
state end time are associated with a dynamic data.
When an reader start up at the specific location, the
reader out of order after a period of time, then a
single tuple of the form (reader epc, reader name,
event_start time, event _end time) will be generated
as shown in Fig.2.

112550 Readert | JORCUHI | 20%00:00.000
1.12552 | Reader2 %8?05(;:1000-.10200 Now
112553 | Readers | TVCUEI | T000:00.000
1.1.255.4 | Reader4 %(1)?07(; :1000- .?6500 Now

Fig. 2 Sample event time

When an object stays at the same location, the
object will be leaved the location after a period of
time, and then a single one of the form (epc,
location_id, state_start_time, event end_time) will
be registered as shown in Fig.3.

LLLL | Loc0ol 100000000 | Now
1112 Leeooz | TREIETS | 500:00.000
1.1.1.3 Loc003 %(1)?07(;:1000-‘10500 Now
e ocoos | TG0 | 12:00:00.000

Fig. 3 Sample state time

ITII. PARTITION METHODS

A. Average Period plus Delta Partition

Stream Manager with filtering function generates
large volume of data and Data Manager stores all
data in Data Store at first. We assume all active
objects are stored in Data Store which has an active
partition P;. Data Manager check the active partition
for every fixed period and move all objects from the
active partition to an archive partition. Moving
objects have their end time less than the end time of
fixed period. Non-active objects will be moved into
Data Archive (P;, P, ...) for every fixed period as

Internationa! Journal of KIMICS, Vol. 5, No. 4, December 2007

371

shown in Fig. 4 (dotted lines represent the life spans
of non-active objects).

APy Py APy

v

100 120 140 160 180 now.
Fig. 4 Fixed period partition

The active object set is defined as:
AOS; = {E; | now- FP; < E; ST }

where Ej; is the object id, E;.ST is the event start
time or the state start time of each object, and FP; is
the fixed period for an active partition. The non-
active object set is defined as:

NAOS; = {E; | E;.ET < now- FP; }

where E;.ET is the event end time or the state end
time of each object. We suppose two temporal
attributes, E;.ST is the event start time or the state
_start time of each object, E;.ET is the event end time
or the state end time of each object, and then a
period of an object is /;;= E;;.ET — E;;.ST. A set of
period for all objects L is as following: L = {I;;, I;5,
«.s Iun}. The number of periods for L is n = |L|. The
average period of all objects AP is defined as:

s,
AP - lyel
n

A set of P; is an object set including periods of
objects, which are included the period (4P;+ A). The
4 is a time granularity more than second. The last
partition P, has active objects that are defined as
follows:

Py={E;| E; SAOS; such that l; < AP }

| B
P P, wen
f AP+ 4
AP+ 4 *
>

100 120 140 160 180 now

Fig. 5 Average period plus delta partition

B. Adaptive Average Period Partition

When the object life spans are regular and not with
long lived objects, the above fixed period partition
and Average Period plus Delta partition works well.
Also, when almost of queries are performed on
active partition, these both partition methods are
efficient. There are various RFID applications and
the object life spans are not uniform. We have
common RFID queries such as object tracking and
monitoring, and other complex queries e.g., time
slicing and snapshot queries, these queries should be
effectively supported on the proper search spaces.

On the other hand, lifespan of event-based objects
are short, state based objects generate dynamic state
histories these lifespan are long. Although a state-
based object becomes non-active data having end
time value, if this object still stays on other tables,
for example, not sold out to customer, the object is
not moved to Data Archive and be kept in Data Store
Py as following form:

P, = {E; | dE; €A0S; such that
ANAOS:)}

(ly; < AP

state-based non-active data ‘ state-based active data

Es * Eis N

l .
N [
100 120 now

event-based non-active data I

F‘?f *

Fig. 6 Adaptive average period partition

Here we use dash-dot lines to represent non-
active data, and dash lines to represent active data in
Fig. 6. It may be possible to move non-active data
using average period plus delta that presented in
Algorithm 1. Delayed data moving by some possi-
bility can be accomplished by running Algorithm 2.

Algorithm 1 AveragePeriodDeltaPartition

Input: active object E, i average period AP,
Output: non active partition P;
Method:
1: begin
2. for each active object £ in data_store
3 if £, ET < now- (4P:+ 4) then
4: move Ej; in P;in
5: else stays E;; in data_store
6 end for
7 move P; into archive store
8: end

372

Hong-won Yun : In Adaptive Partitioning for Efficient Query Support

Algorithm 2 AdaptiveAveragePeriodPartition

Input: active object E, i average period AP,
Output: non active partition P;
Method:
1: begin
2: for each active object E in data_store
if £, ET < now- (4P;+ 4) then
if E; .y ==null then
move E;; in P,
else stays E;; in data_store
else stays £;; in data_store
end for
move P; into archive_store
:end

A A AR AN

—

IV. PERFORMANCE STUDY

In this section, we perform a thorough evaluation
of our partitioning methods. The experiments were
implemented using C++ and were conducted on an
Intel pentium4 3.0GHz system with 2GB of RAM.
We use randomly event-base queries and state-based
queries based on historical and current data to
We use the

evaluate performances.
parameters and values.

following

Numbef of data

100,000
Data size 256 byte
Number of partitions 30

Time period
Rate of non-active data

100, 110, ..., 200
10,20, ..., 50%

Fig. 7 shows the average response time of the adaptive
average period partition and the average period plus delta
partition compared with the fixed period partition. The
adaptive average period partition has a fast response time
around 1.5 times the fixed period partition when the
average interarrival time is 100 milliseconds as shown in
the Fig 7. As expected the size of the adaptive average
period partition at state-based queries increases adapti-
vely.

o 100 —— FixedPeriod
£ 600 % —&- AvgPeriodDelta
o 500 AdaptiveAvgPeriod
5% 400 b
o
6= 300
w200}
g 10 f
: o0
100 200 300 400 500
average interarrival time (ms)

Fig. 7 Average response time vs. Average interarrival time

700 —e— FixedPeriod
2 600 - AvgPeriodDelta
E 500 AdaptiveAvgPeriod
S 400
&£
g~ 300
o 260
&
‘g 100
® 0
10, 20 30 40 S0
non-active:data rate (%)

Fig. 8 Average response time vs. Non-active data rate

—4— FixedPeriod
—&= AygPeriodDelta
AdaptiveAvgPeriod -}

average response iime
(%)

10 20 30 40 50
histarical.query rate (%)

Fig. 9 Average response time vs. Historical query rate

Fig. 8 also shows the average response time of the
adaptive average period partition and the average
period plus delta partition compared with the fixed
period partition. In this case we vary the rate of non-
active data from 10% to 50 %. As it can be seen in
the figure, the adaptive average period partition
clearly outperforms the fixed period partition. This is
expected as the fixed period partition uses more data
blocks for queries than the average period plus
partition and the adaptive average period partition.

Fig. 9 shows the response time on varying of
historical query rate. The query executing on the
adaptive average period partition is significantly
faster than the fixed period partition. We can see that
the rate of temporal range queries come into effect
the difference between the fixed period partition and
the average period partition series. The range queries
on the fixed period partition need more data blocks
to execute than the adaptive average period partition.

A major contribution of the proposed partition
methods is the ability to efficiently response time at
various experiments.

V. CONCLUSIONS

RFID data are generated quickly, accumulated for
querying and become large volume of data. It can lead to
slower queries and updates. We can partition into active
data and non-active data to achieve better query
performance and efficient updates. The fixed period
partition is well known to us. In this paper, we propose
two methods of partitioning for efficient query support:
average period plus delta partition and adaptive average
period partition. The data manager in the RFID system
check the data store and move all objects from the active

International Journal of KIMICS, Vol. 5, No. 4, December 2007

373

store to an archive store associated with an average
period plus data and an adaptive average period. We
present the system architecture to manage active data and
non-active data and logical database schema to imple-
ment data stream database. We experiment to show the
performance of two our partitioning methods and the
adaptive average period algorithm clearly outperforms
the other two methods. We believe that further study is
needed to implement the data manager for these parti-
tioning methods.

REFERENCES

[1] S.S. Chawathe, V. Krishnamurthy, S. Ramachandrany,
and S. Sarma. “Managing RFID Data,” VLDB,
pp-1189-1195, 2004.

[2] M. Palmer. “Seven Principles of Effective RFID
Data Management,” www.objectstore.com/docs/ art-
icles/7principles_rfid_mgmnt.pdf, Aug. 2004,

3] S. Liu, F. Wang and P. Liu, “Integrated RFID Data
Modeling: An Approach for Querying Physical Objects
in Pervasive Computing,” CIKM’06, Nov. 2006.

[4] EPCglobal. The EPCglobal Network, 2004. Available:
http:/Awww.epcglobalinc.org

[5]1 Y. Bai, F. Wang and P. Liu, “Efficiently Filtering RFID
Data Streams,” CleanDB, Sep. 2006.

[6] S. Sarma, “Integrating RFID,” ACM Queue, 2(7),
pp-50-57, October 2004.

[71 A. Asif and M. Mandviwalla, “Integrating the supply
chain with RFID: A technical and business analysis,”
Communications of the Association for Information
Systems, 15, pp.393-427, 2005.

[8] Thomas Diekmann, Adam Melski, and Matthias
Schumann, “Data-on-Network vs. Data-on-Tag: Manag-
ing Data in Complex RFID Environments,” 40"
HICSS’07, pp.224-234, 2007.

[9] Fosso Wamba et al, “Enabling Intelligent B-to-B
eCommerce Supply Chain Management using RFID
and the EPC Network: a Case Study in the Retail
Industry,” International Journal of Networking and
Virtural Organizations, 3(4), pp. 450-462, 2006.

[10]Boris Bonfils and Philippe Bonnet, “Adaptive and
decentralized operator placement for in-network
query processing,” IPSN2003, pp.1361-1364, April
2003.

[111V. D. Berg, J. P. and W. H. M. Zijm, “Models for
Warehouse Management: Classification and Examples,”
International Journal of Production Economics, 59, pp.
519-528, 1999.

[12]Bai, Y., Wang, F., Liu, P., “Efficiently Filtering
RFID Data Streams,” In CleanDB Workshop, pp.
50-57, 2006.

[13]Gonzalez, H., Han, J., Li, X, Klabjan, D,
“Warehousing and Analyzing Massive RFID Data
Sets,” 22nd IEEE ICDE Conference, 2006.

[14] Jeffery, S., Garofalakis, M. ,Franklin, M.: Adaptive
Cleaning for RFID Large Data Bases, 32nd
international conference on VLDB, pp.163-174, 2006.

Hong-won Yun

He received his B.S. and the Ph.D.
degrees at the Department of Com-
puter Science from Pusan National
University, Korea, in 1986 and 1998,
respectively. He is a professor at the
Department of Information Technol-
ogy, Silla University in Korea. His
research interests include temporal database and data
stream management.

