건축구조물의 풍하중 구현 및 풍특성 평가를 위한 가진시스템 설계

Design of an Excitation System for Simulating Wind-Induced Response and Evaluating Wind-load Resistance Characteristics

  • 발행 : 2007.12.30

초록

본 논문에서 건축구조물의 풍응답 구현을 위한 선형질량가진기(linear mass shaker, LMS)와 능동동조질량감쇠기(active tuned mass damper, ATMD)를 이용한 가진시스템을 제안한다. 가진시스템을 위한 가진기의 힘은 가진기에 의한 구조물의 목표응답의 전달함수를 사용하여 계산된다. 필터와 포락곡선함수는 예측하지 못한 모드응답에 의한 가진과 초기 과도응답을 제거함으로써 실제 바람에 의한 응답과 가진기에 의한 응답의 오차를 최소화하기 위하여 사용되었다. 수치예제로는 풍동실험을 통한 풍하중이 주어진 76층 벤치마크 구조물을 이용하여 수치해석을 수행하였으며, 그 결과는 특정층에 설치된 가진시스템은 풍하중이 전층에 가진되었을 때의 응답을 근사하게 구현할 수 있음을 보여준다. 제안된 방법에 의해 설계된 가진시스템은 실제 건축구조물의 풍응답 특성을 평가하는데, 그리고 풍하중을 받는 건물의 정확한 수치모델을 얻는데 효과적으로 사용될 수 있다.

In this paper, excitation systems using linear mass shaker (LMS) and active tuned mass damper (ATMD) are presented in order to simulate the wind induced responses of a building structure. The actuator force for the excitation systems is calculated by using the inverse transfer function of a target structural response to the actuator. Filter and envelop function are used such that the error between the wind and actuator induced responses is minimized by preventing the actuator from exciting unexpected modal response and initial transient response. The analyses results from a 76-story benchmark building problem in which wind load obtained by wind tunnel test is given, indicate that the excitation system installed at a specific floor can approximately embody the structural responses induced by the wind load applied to each floor of the structure. The excitation system designed by the proposed method can be effectively used for evaluating the wind response characteristics of a practical building structure and for obtaining an accurate analytical model of the building under wind load.

키워드

참고문헌

  1. 이상현, 박은천, 윤경조, 이성경, 유은종, 민경원, 정란, 민정기, 김영찬 (2006) 실물 크기 구조물의 강제진동실험 및 지진응답 모사를 위한HMD 제어기 설계, 한국지진공학회논문집, 10(6), pp.103-114 https://doi.org/10.5000/EESK.2006.10.6.103
  2. Alvin, K.F., Park, K.C. (1994) Second-Order Structural Identification Procedure via State-Space-Based System Identification, AIAA Journal, 32. pp.397-406 https://doi.org/10.2514/3.11997
  3. Au F.T.K, Jiang R.J., Cheung Y.K. (2004) Parameter identification of vehicles moving on continuous bridges, Journal of sound and vibration, 269. pp.91-111 https://doi.org/10.1016/S0022-460X(03)00005-1
  4. Dyke, S.J., Spencer Jr., B.F., Quast, P., Sain, M.K., Kaspari Jr., D.C., Soong, T.T. (1994) Experimental Verification of Acceleration Feedback Control Strategies for an Active Tendon System. Technical Report NCEER-94-0024. State University of New York at Buffalo, Buffalo, NY
  5. Friswell, M.I., Mottershead, J. E. (1995) Finite Element Model Updating in Structural Dynamics, Kluwer Academic Publishers, Boston, London
  6. Herman V.A., Bart P. (2003) Sensors and Systems for Structural Health Monitoring, Journal of Structural Control, 10. pp.117-125 https://doi.org/10.1002/stc.21
  7. Juang, J.N. (1994) Applied System Identification. Prentice Hall, Englewood Cliffs, NJ
  8. Ljung, L. (1987) System Identification: Theory for the User, Prentice Hall, Englewood Cliffs, NJ
  9. Madenci, E, Barut, A. (1994) A free-formulation-based flat shell element for non-linear analysis of thin composite structures, International Journal for Numerical Methods in Engineering, 37, pp. 3825-3842 https://doi.org/10.1002/nme.1620372206
  10. Yang J.N., Agrawal A.K., Samali B., Wu J.C. (1999) A Benchmark Problem for Response Control of Wind-Excited Tall Buildings, World Wide Website, http://www.eng.uci.edu/-jnyang/benchmark.htm
  11. Yu E., Whang D.H., Conte J.P., Stewart J.P., Wallace J.W. (2005) Forced vibration testing of buildings using the linear shaker seismic simulation (LSSS) testing method, Earthquake Engng. Struct. Dvn., 34. pp. 737-761 https://doi.org/10.1002/eqe.453