`Ailsa Craig` 토마토 캘러스의 형태학적 특성과 식물체 재분화에 미치는 영향

Morphological Characterization of 'Ailsa Craig' Tomato Callus and Effect on Plant Regeneration

  • 발행 : 2007.12.31

초록

`Ailsa Craig` 토마토 품종의 기내배양시 신초재분화의 최적조건을 밝히고자 실험하였다. 본 실험에서 캘러스 형성 및 신초 재분화에 사용된 배지조성은 6가지 조건으로 하였다. 기본 MS 배지에 zeatin 2 mg/l, zeatin 2 mg/l+IAA 0.1 mg/l, zeatin 2 mg/l+IAA 0.5 mg/l, zeatin 4 mg/l, 4 mg/l+IAA 0.1 mg/l, zeatin 4 mg/l+1AA 0.5 mg/l을 첨가하여 캘러스 및 신초 재분화율의 조건별 차이를 살펴 보았다. 그 결과 zeatin 2 mg/l를 단독 배양한 조건에서 신초 재분화율이 가장 양호하였으며, 캘러스 형성률에 있어서는 큰 타이를 보여주지 못했다. 또한 조건별로 기내상태에 있는 캘러스의 형태적인 차이를 살펴보기 위하여 SEM을 이용하여 관찰하였다. 캘러스 조직의 표면을 관찰한 결과, zeatin 2 mg/l를 단독 배양한 조건에서 완전한 신초로 재분화 하기 위한 구형의 모형이 관찰되었으며, 나머지 조건의 캘러스는 쭈글쭈글한 형태의 캘러스가 확인되었다. 이 같은 결과들로 볼 때, 토마토 'Ailsa Craig'의 조직배양시 캘러스 모양이 찌그러지지 않는 완전한 구형의 캘러스 상태에서 신초재분화율이 더 높아지는 것으로 나타났다.

In an attempt to optimize the in vitro-regeneration conditions necessary for the genetic manipulation of tomato species, we examined 'Ailsa Graig' cultivar of Lycopersicon for regeneration ability. The basal medium used for callus formation and shoot regeneration was MS (MS + vitamin) supplemented with six combinations of zeatin 2 mg/l, zeatin 2 mg/l + IAA 0.1 mg/l, zeatin 2 mg/l + IAA 0.5 mg/l, zeatin 4 mg/l, zeatin 4 mg/l + IAA 0.1 mg/l and zeatin 4 mg/l + IAA 0.5 mg/l. When all conditions tested were considered, however, only zeatin 2 mg/l was shown to be the best in shoot regeneration. The morphological characterization from in vitro-cultured callus of Lycopersicon esculentum L. var. 'Ailsa Craig' was investigated with scanning electron microscope (SEM). The surfaces of in vitro-cultured callus had well-defined epidermal cell in condition of zeatin 2 mg/l, but those of different treatments were twisted. These results suggested that shape of callus was involved in efficiency of shoot regeneration in tomato 'Ailsa Craig'.

키워드

참고문헌

  1. Abdul-Baki, A. A. (1991) Tolerance of tomato cultivars and selected gerplasm to heat stress. J. Amer. Soc. Hort. Sci. 116, 1113-1116
  2. Alan, E. and Rowe, R. C. (1992) Screening tomato seedlings for multiple disease resistance. J. Amer. Soc. Hort. Sci. 117, 622-627
  3. Banerjee, M. K. and Kalloo, M. K. (1987) Sources and inheritance of resistance to leaf curl virus in lycopersicon. Theor. Appl. Genet. 73, 707-710
  4. Lim, H. T., Kim, J. K., Lim, C. K., Han, K. P. and Song, Y. N. (1992) Studies on the agronomic characteristics of wild species of tomatoes. J. of Agri. Aci. (KNU) 4, 87-97
  5. Lim, H. T., K. U., A. M., Han, K. P. and Yoo, K. C. (1993) Evaluation of wild relatives of the cultivated tomato for their salinity tolerance using in vitro test. J. Kor. Soc. Hort. Sci.(Abstract) 11, 44-45
  6. Young, T. E., Juvik, J. A., Sullivan, J. G. and Skirvin, R. M. (1990) An in vitro method for screening for the presence of the pat-2 gene in tomatoes. Plant Cell Rep. 8, 538-541 https://doi.org/10.1007/BF00820204
  7. Muhlbach, H. P. (1980) Different regeneration potentials of mesophyll protoplasts from cultivated and a wild species of tomato. Planta 148, 96-98
  8. Sharon, M. K. and Lineberger, R. D. (1983) Genotypic defferences in morphogenic capacity of cultured leaf explants of tomato. J. Amer Soc. Hort. Sci. 108, 710-714
  9. Behki, R. M. and Lesley, S. M. (1976) In vitro plant regeneration from explants of Lycopersicon esculentum (tomato). Canj. Bot. 54, 2409-2413 https://doi.org/10.1139/b76-254
  10. Kartha, K. K., Champous, S., Gamborg, O. L. and Phal, K. (1977) In vitro propagation of tomato by shoot apical meristem culture. J. Amer. Soc. Hortic. Sci. 102, 346-349
  11. Kim, J. C., Choi, S. J., Lim, C. J. and Cho, D. H. (1992) Plant regeneration from protoplast in Lycopersicon esculentum and L. hirsutum. Korean J. Plant Tissue Culture 19, 351-355
  12. Lim, H. T. (1991) Somaclonal variation in leaf-callus regenerated plants of Lycopersicon esculentum L. var. Rutgers. J. Sci. & Technology (KNU). 30, 380-388
  13. Lim, H. T. and Hoffman, F. M. (1991) Morphological and anatomical changes on tissue-cultured plantlets of Lycopersicon esculentum L. during their acclimatization. Korean J. Plant Tissue Culture 18, 369-375
  14. Sibi, M. M., Biglary, M. and Demarly, Y. (1984) Increase in the rate of recombinants in tomato (Lycopersicon esculentum L.) after in vitro regeneration. Theor. Appl. Genet. 68, 317-321 https://doi.org/10.1007/BF00267884
  15. Tan, M. M. C., Rietveld, E. M., Marrewijk G. A. M. V. and Kool, A. J. (1987) Regeneration of leaf mesophyll protoplast of tomato cultivars (L. esculentum): Factors important for the efficient protoplast culture and plant regeneration. Plant Cell Rep. 6, 172-175 https://doi.org/10.1007/BF00268470
  16. Kim, Y. H., Park, C. H. and Park, S. U. (2002) Effect of silver nitrate (AgNO3) and polyamines on shoot organogenesis and plant regeneration of Lycopersicon esculentum cultivar, Micro-Tom. Korean J. Plant Biotech. 29, 25-29 https://doi.org/10.5010/JPB.2002.29.1.025
  17. Sutter, E. (1988) Stomatal and cuticular water loss from apple, cherry, and sweetgun plants after removal from in vitro culture. J. Amer. Soc. Hort. Sci. 113, 234-238
  18. Wetzstein, H. Y. and Sommer, H. E. (1982) Leaf anatomy of tissue cultured Liquidamabar styraciflua (Hamamelidaceae) during acclimatization. Amer. J. Bot. 69, 1579-1586 https://doi.org/10.2307/2442913
  19. Skoog, F. and Miller, C. D. (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp. Soc. Exp. Biol. 11, 118-130
  20. Lim, H. T., Lee, K. S., Yeong Y. R., Song, Y. N. and Kim J. H. (1994) Plant regeneration from hypocotyls explants of several species of Lycopersicon. Korean J. Plant Tiss. Cult. 21, 137-143