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Optimal Active-Control & Development of Optimization Algorithm for Reduction of
Drag in Flow Problems(1)
-Development of Optimization Algorithm and Techniques for Large-Scale and Highly
Nonlinear Flow Problem
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Abstract

Ever since the Prandtl’s experiment in 1934 and X-21 airjet test in 1950 both attempting to reduce drag, it was found that
controlling the velocities of surface for extremely fast-moving object in the air through suction or injection was highly effective
and active method. To obtain the right amount of suction or injection, however, repetitive trial-and error parameter test has been
still used up to now.

This study started from an attempt to decide optimal amount of suction and injection of incompressible Navier-Stokes by
employing optimization techniques. However, optimization with traditional methods are very limited, especially when Reynolds
number gets high and many unexpected variables emerges. In earlier study, we have proposed an algorithm to solve this problem
by using step by step method in analysis and introducing SQP method in optimization.

In this study, we propose more effective and robust algorithm and techniques in solving flow optimization problem.

Keywords - optimal control, Navier-Stokes flow, suction, injection, SQP method, quasi-Newton method,
sensitivity analysis, control of convergency criteria
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1. Introduction

Highrise buildings acting against the wind shows
same behavior with vehicles(e.g. airplanes, automo-
biles, ships) under the influence of wind or water.
That is, as the speed of wind or water gets faster,
minus pressure and vortex occur in the backside of
the buildings and vehicles. In turn, it causes large
displacement in highrise buildings and reduced
speed in vehicles. To reduce such effects, attempts
to partly change the flow by altering shape or add-
ing attachment(e.g. rear wing of automobile) had
been made. However, the outcome of these passive
efforts was not so powerful.

“Can we control the flow as we want?”

Active control of flow by suction and injection
came up as an answer to the question. This can
greatly reduce minus pressure and vortex, and in
turn leads to decreased displacement in buildings
and increased speed in vehicles. Then, questions
such as optimal amount of suction or injection
needed to best control the flow and a way to obtain
the amount remain to be answered.

Ever since the Prandtl’s experiment in 1934 and
X-21 airjet test in 1950 both attempting to reduce
drag, it was found that controlling the velocities of
surface for extremely fast-moving object in the air
through suction or injection was highly effective and
active method. To obtain the right amount of suc-
tion or injection, however, repetitive trial-and error
parameter test has been still used up to now.

This study started from an attempt to decide op-
timal amount of suction and injection of in-
Navier-Stokes by

mization techniques. However, optimization with

compressible employing  opti-
traditional methods is very limited, especially when
Reynolds number gets high and many unexpected
variables emerges. In earlier study, we have pro-
posed an algorithm to solve this problem by using
step by step method in analysis and introducing
SQP method in optimization(Bark, 2002).

In this study, we propose more effective and ro-

bust algorithm and techniques in solving flow opti-
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mization problem.

2. Analysis for the incompressible steady-state
Navier-Stokes flow

Here, we discuss the numerical approximation
and solution of the governing flow equations, name-

ly the incompressible Navier-Stokes equations.
2.1 Finite element approximation

Incompressible steady-state Navier-Stokes equa-

tions can be expressed as:

—pAutplu: Vie+vp=0 (1)
VvV -u=0 (2)

where ¢ is the dynamic viscosity, p is the density,
p is the pressure, and u is the flow velocity.

The programming complexity associated with
Ladyzhenskaya-Babuska-Brezzi(LBB)-satisfying ele-
ments leads us to consider a different form of the
equations, whose finite element approximation is
not subject to the the LBB condition. This form is
established by replacing the conservation of mass

equation (2) with the approximation
V - u=—e€p (3)

This allows us to solve for pressure in terms of
velocity, and we can thus eliminate pressure from
the governing equations, resulting equation (1) and
(2) can be reduced by (4)

~pAutpln - V)u= SV (V- w) =0 @

Thus, the number of unknowns is reduced sig-
nificantly since pressure is no longer a variable.
Most importantly, the LBB condition is no longer
applicable, since equation (4) is not mixed form.
This simplifies the programming techniques and da-
ta structures. Of course, in the limit as penalty pa-

rameter €—0, we regain the original problem. 107~



107 was a reasonable range for the penalty param-
eter(€).

The finite element formulation can be obtained
from the variational, or weak formulation of equa-
tions (4) by using the Galerkin method.

A code has been written that sclves the in-
compressible Navier-Stokes equations. It employs
isoparametric biquadratic 9-nodes rectangular elem-
ents. For Gauss-Legendre numerical integration, ba-
sically a 3x3 scheme is used. However, under-
integration, i.e. 2x2, is necessary for the pressure
terms to insure singularity of the corresponding con-
tribution to the Jacobian matrix, and hence avoid
"locking” of the approximate solution. The pressure
terms are the ones that involve the penalty parame-
ter(e).

2.2 Solution methods for discrete Navier-
Stokes equations

The discrete form of the Navier-Stokes equations
is a system of nonlinear algebraic equation. i.e.
h(u)=0, where h represents the residuals and u
represents the vector of unknown velocities. A very
effective method for solving these equations 1is
Newton’s method. It is well-known that this meth-
od is locally quadratically convergent, that is that
close to the solution, the error is squared between
subsequent iterations, i.e. the number of correct
digit is doubled. Solution of equation (4) by
Newton’s method requires the Jacobian matrix of h.
These Jacobian matrices J are analogous to stiff-
ness matrices for linear finite element problems.

Following is the summary of the steps of
Newton's method for Analysis

1) update hiand J;

if llhll < v, then

terminate: otherwise go to step 3

2) check convergence criterion :

3) solve J,p=—h,
4) upq =u,+p
5) go to step 1

where hpand J; indicate evaluation of h and J at

u;, k is the k-th iterate point. In general we use
y=10"",

Step 3 is a linear system of the form:

JXX ny sz P« - hX
Jyx Jyy Jyz Py|= | ™ hy (5)
sz Jzy JZL o - hz

Because of the large dimensions involved, we
must use an efficient method to solve this system of
equations. It will be seen that sensitivity analysis
requires the repeated solution of linear systems
having the same coefficient matrix, but different
right-hand sides, each corresponding to a different
control variables. This, as well as the fact that J is
unsymmetric, favors sparse direct methods for
solution. Perhaps the most efficient code for factori-
zation of sparse unsymmetric matrices is the un-
symmetric-pattern multifrontal sparse LU factoriza-
tion code UMFPACK(Davis, 1993), and we use this
code for solution of the linear system (5) arising at
each step of Newton's method.

Despite its excellent convergence rate, Newton's
method is only locally convergent. In particular for
Navier-Stokes equations, an upper bound on the di-
ameter of the convergence “ball” for Newton's meth-
od varies as 1/Re(Gunzburger, 1989). The con-
sequence is that as the Reynolds number increases,
one needs better initial guesses to guarantee con-
vergence to a solution: otherwise, divergence may
occur. Thus, we solve a sequence of problems lead-
ing to the Reynolds number of interest, as follows:

1) solve the problem with low Reynolds number.

2) increment Reynolds number.

3) solve the problem using the results of previous

step as initial guesses.

4) repeat above steps until final Reynolds number

is reached.

Density(p) is used as a parameter to increase
Reynolds number. Within each step, we iterate until
convergence is achieved: then the converged sol-
ution is used as the initial guesses for the next

step. However we will discuss a more sophisticated
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continuation strategy that makes use of sensitivity

information.

3. Optimization

The continuous optimization problem is defined

as:
minimize 2#/ [D:D]d (6)
17
subject to
—pAutpu - v)u—%v(v cu)=0 (7

where D=D(u) = (Vu+ vu’)/2, and the symbol :

represents the scalar product of two tensors.

3.1 Formulation of the discrete optimiza-
tion problem

Using the finite element approximation defined in
section 2, we arrive at a discretized form of the op-

timal control problem, which in symbolic form is:

minimize @ (u,b) (8)

subject to h(u,b)=0 9)

Here, the constraints h =0 are the discrete form
of the Navier-Stokes equations. We have partitioned
the velocities u(i.e. the velocities at all nodes other
than those that lie on suction/injection holes), and
the control variables b(i.e. the velocities of nodes
where suction/injection is applied). This objective

function @ is related to velocities by

¢=-u I (10)
and again depends on both state velocities u and
control velocities b. Here J; is the portion of the
Jacobian matrix that depends on viscosity. We may
also choose to augmented the constraints by bounds
on the control variables. The problem is then one in
nonlinear-constrained smooth optimization.

In general it is not straightforward to apply SQP
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methods to flow optimization problems of the form
(8) and (9), since the constraint sets produced are
very large and nonlinear. Therefore we pursue a de-
composition of the problem into the state space and
the control space, as follows: solve at each iteration
the discrete Navier-Stokes equations(h(u,b)=0) for
the state variables(u) given values of the control
variables(b). Thus, we have eliminated the state
equations from the constraint set, and we have
eliminated the state variables from the set of opti-
mization variables. As a result of this decom-
position, the state variables become an implicit
function of the control variables, the implicit func-
tion being the flow solution itself. Thus, we can
write the optimization problem as the unconstrained

optimization problem:
minimize ®(u(b),b) (1D

The dimension of the optimization problem is now
greatly reduced, and the constraints are eliminated.
However, the implicit dependence of state variables
on control variables requires a special approach,
called sensitivity analysis, to find the derivatives of
the objective function with respect to the control

variables.

3.2 Sensitivity analysis

Here, we will show how to obtain the gradient of
objective function and constraints with respect to
the control variables, taking into account the im-
plicit dependence of the state variables on the con-
trols through the discrete Navier-Stokes equation.
SQP requires this information to solve the opti-
mization problem. Furthermore, this sensitivity
analysis also gives us a good way to obtain better
initial guesses for state variables for the analysis
problem at each control iteration, as will be shown
in section 5.1.

Let £ denote either the objective or a constraint
function. Here, #' depends explicitly on the control

variables b as well as implicitly on them through



the state variables u:
F= F(u(b),b) (12)

The relationship between u and b is dictated by
the discrete form of the Navier-Stokes equations,

which we refer to as the state equations:
h(u(b),b)=0 (18)

The total derivative of the objective with respect
to the control variables can be found by applying
the chain rule,

DE_ oF | oF  du
Db b ou  db (14)

Here 0F/8b and 8F/éu can be readily found
from the expression for the discrete form of the ob-
jective function. The only unknown is du/db. but
this vector can be found by applying the implicit
function theorem for the state equations, yielding

Dh_oh, b du_,
Db ob ou  db (15)

Thus, the sensitivity of the velocity field with re-
spect to control variables can be found by solving

the linear system

bh du_ oh
sa  db b (16)

This is a linear system with coefficient matrix
that is just the Jacobian of the state equations with
respect to the state variables, and thus is a compo-
nent of any Newton solver. Therefore, the same lin-
ear solver that is at the heart of the flow simu-
lation is used for sensitivity analysis, with the ex-
ception- of the right-hand side vectors. The matrix
of these vectors, 8h/8b, can be readily found
analytically. It is seen that this first-order sensi-
tivity analysis requires the solution of a system of
equations for as many right-hand sides as there are

control variables.

upA g

3.3 SQP methods for solving the optim-
ization problem

The basic SQP iteration can be viewed as(Bark,
2002):
1) do analysis (obtain u; knowing b by solving
equation (13))
2) do sensitivity analysis (obtain DF/ Db, from
equation (14))
3) construct approximate Hessian matrix By from
DF/ Db,
4) check convergence criterion : if ||1DF/ Dbyl <
v, then terminate: otherwise go to step 5
5) find P by solving
minimize %plgTkak+ D %k
6) b,y = b, +ap; a€ (0,1]
7) go to step 1

As mentioned before, the continuation technique is
used on the analysis problem. The straightforward
way to integrate this continuation technique into an
optimization method is as follows(see Figure 1).

1) use continuation to solve the analysis problem

for the given Reynolds number.

2) update the control variables by doing one opti-

mization iteration.

3) repeat the above for each optimization iter-

ation until the optimum is reached.

Actually we proposed this continuation technique

in the previous paper(Bark, 2002), which we will

— Optimization
Re (increase Reynolds number)

{'- Analysis

step iteration
v
step

iteration

Figure 1 Algorithm of OA-SQP
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refer to as OA-SQP(old algorithm).

This algorithm is superior to the steepest descent
method, because it uses (approximate) curvature in-
formation in solving the optimization problem.
However this algorithm still entails much work. We
perform analysis to get the value of state variables,
which are used for the objective function and the
sensitivity analysis. Usually the number of state var-
iables is much larger than that of control variables.
Therefore most of cost will be spent on getting the
values of the state variables. One analysis step itself
requires a lot of work: furthermore we need to per—
form several analysis steps at each optimization
iteration. Therefore solving analysis with only con-
tinuation at each control iteration requires a great
deal of work especially for higher Reynolds number
problem. Therefore we want to propose a new algo-
rithm and a number of techniques to overcome the

computational complexity of OA-S@QP.
4. Newly developed algorithm

Steepest descent and OA-S@P method entail a lot
of work, and sometimes they may not converge at
all. Here, we will propose new algorithm to increase
the efficiency of the optimization process.

We have used continuation techniques for the
analysis problem in OA-SQ@P, but a more promising
idea is to integrate continuation with optimization,
which we refer to as NA-SQP(newly developed algo-
rithm). See Figure 2.

1) solve the optimization problem with a given

Reynolds number (Initially a low Reynolds

—— Re (increase Reynolds number)

—— Optimization
Analysis
step
by L
step iteration  teration

Figure 2 Algorithm of NA-SQP
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number is used). At each optimization iter-
ation, we only need to do one analysis step,
and the initial guesses for analysis are the
values of previous optimization iteration.

2) increment Reynolds number. Initial values of
analysis quantities(state variables) and opti-
mization quantities(control values, Hessian

matrix and Lagrangian multipliers) of the cur-
rent step are taken as the converged value of
the previous step.

3) repeét above until target Reynolds number is

reached.

In this method, initial values of analysis and opti-
mization quantities at the beginning of each Reynolds
step are taken as those of previous Reynolds step,
and initial values of analysis variables at each opti-
mization iteration are taken as those of the previous
optimization iteration.

Usually this method needs more optimization
iteration than OA-SQP dose. However this method
reduces the number of analysis iterations sig-
nificantly, and most of cost to solve this kind of
problem is spent on doing analysis. Therefore if we
want to solve an Reynolds number(Re) =500 prob-
lem with step size Re=50, OA-SQP needs one opti-
mization cycle but n analysis step for each opti-
mization iteration, which NA-S@P needs n opti-
mization cycles but only one analysis step for each
optimization iteration. Our results demonstrate that
NA-SQP not only improves robustness(converges in
cases where OA-SQP doesn’t), but also increase the

_efficiency of the optimization process. For example,

for a problem with a target Reynolds number of 400
with step size 50, it reduced CPU time by a factor
of 5 over the OA-SQP. For Reynolds numbers over
500, OA-SQP did not converge with step size 50.

5. Proposed techniques

In previous section, we proposed NA-S@P. Here,
we will propose several techniques to further in-
crease the efficiency of the optimization process.
They all also include the feature of NA-SQP.



5.1 Technique-1

Since methods of Newton form are basically sta-
tionary iterative processes, and since our analysis
solver and optimizer are both methods of Newton
form, it is important to provide then with good ini-
tial guesses. One technique that can be used to
provide a good initial guesses is available from sen-
sitivity information at essentially no cost.

At each optimization iteration, initial guesses for
analysis are the results of previous iteration’s

analysis. Therefore,

u

initial uprevious (17)

However we can approximate new values of the
velocities at each optimization iteration, using a

first-order approximation of their change:

unew ~u

previous db * (18)

Here, W, cyious and Ab are known. From sensi-

tivity analysis, du/db is available easily.

du__(ohy-y oh
b ou ab (19)

Therefore we can use this U,., to initiate the

Newton solution at each control iteration.

Winitial = Unew (20)

We refer this technique as TI-NA-SQP. It also
includes the feature of NA-SQP.

This idea can be extended to include second-order
information. Although we did not implement it, we

will sketch the basic idea here.
We can approximate W, UsSing one more term

in the Taylor series expression:

uh

2
Ab+ L AREE Ay
2 d®

(21)

L du

u previous db

initial ~ U

Even with these improvements, one can ask sev-

eral questions:

1) At each iteration, an analysis is performed in-
stead of embedding the state equations as
equality constraints. This analysis provides
the data for the objective function and de-
rivative of the objective function. Bur are full
analyses needed when one is far from the op-
timal solution?

2) Continuation between optimization problems is
used to generate good initial guesses for the
final step. What then is a good initial guess?
How good should the initial guesses be?

Each question motivates a different modification
to our SQP method.

5.2 Technique-2

Motivated by the simultaneous method(Bark,
1996), we try to address the first question mentioned
above. In the simultaneous method, the state equa-
tions are embedded as equality constraints and the
optimization problem is solved directly in the form of
equation (8) and (9). Such an approach will not be
feasible here, since the discrete Navier-Stokes equa-
tions will number in tens of thousands, and solving
the QP subproblem is extremely difficult. However, it
is instructive to observe the behavior of this so-called
simultaneous method, for it suggests a remedy even
if we eliminate the flow equations at each control
iteration. The philosophy of the simultaneous method
is that the constraints (i.e. the flow equations) need
not be satisfied when we are far from the optimum.
This suggests the following idea: Far from the opti-
mum, there is no need to perform a full analysis. The
convergence rate is only linear away from the neigh-
borhood of the optimum, so provided convergence is

not compromised, and it's convergence rate will not
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deteriorate. This forms the basic of Technique-2,
which also includes the features of TI-NA-SQP. We
refer this technique as T2-NA-SQP.

Therefore, we begin with a coarse(say 107) con-
vergence criterion for the discrete Navier-Stokes
equations, and decrease it in proportion to the opti-
mality condition of the optimization problem. Thus,
for points far from the optimal solution, where the
optimality condition is far from zero, a roughly-con-
verged flow solution is acceptable. As the optimum
approaches, the optimality condition decrease, -and
with it so does the convergence criterion for the
flow problem, until the optimality termination con-
dition 107" is reached. Figure 3 shows the nesting
of iteration of this technique. The steps are sum-
marized below:

1) given Reynolds number, solve optimization prob-

lem as follows:

{(a) use coarse convergence criterion for opti-
mality condition (¥} and residual of analysis
problem(€) : y=e€=4(say 107)

()

(¢) if both final output value of KT(Kuhn-Tucker

optimality criterion) and llhll are less than

solve optimization problem

target convergence criterion(say 107), then
terminate (Go to step 2): otherwise decrease
d : for example, §=10"xmax(final output
values of KT, Ilhll of the previous step) set
y=¢=104(d) go to (b)

2) Increment Reynolds number.

3) Repeat above until target Reynolds number is

reached.

:~ Re (increase Reynolds number)

step I‘

Convergence criterion

(coarse — finer)
by step .
step by r Optimization
step

iteration ]—— Analysis

iteration

ra
H
e
=
-
P
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o
o
m
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This technique looks like another continuation
technique on convergence condition. In continuation
on Reynolds number, the increment of Reynolds
number was given in advance, but in continuation
on convergence condition, the current convergence
criterion depends on the final output values of KT
and bl of the previous convergence step(not pre-
vious step’s convergence criterion because final out-
put values of KT and Ilhll are usually less than

convergence criterion).
5.3 Technique-3

T2-NA-SQP use a continuation technigue on the
optimization iteration. Essentially this technique is
used to avoid the need to completely converge flow
equations far from the optimum. The same idea can
be used to avoid complete solution of optimization
problem that arises at each Reynolds step. This
suggests following idea : Each of the sequence of
optimization problem may not have to be solved to
exact optimality far from the target Reynolds num-
ber, since the function of each is simply to provide
a goos- initial guess for the next in the sequence.

Therefore, in Technique-3 we begin with a coarse
convergence criterion(say 10™) for the optimization
problem as well as for the discrete Navier-Stokes
equations, except for the final step. This con-
vergence criterion(say 107") provides quite good re-
sults, but it reduces the number of control iteration

and the analysis iteration significantly, especially

- for higher Reynolds number problems. Only in the

final step, we use a fine(say 107 convergence
criterion. We refer this technique as T3-NA-SQP.
Note that T3-NA-SQP also incorporates the features
of T2-NA-SQP.

With these four improvements, we have been able
to reduce by a factor of more than 15 comparing
with time consumed by OA-SQP for the Re=400
problem with step size Re=50.

We will show these results in the following

papers.



6. Conclusion

Up to now, analysis and optimization to flow
problem has been regarded as very difficult matter.
This study attempted to employ optimization tech-
nique to flow problem. For the purpose, we devel-
oped a new algorithm to improve convergency of op-
timization and three other techniques to increase
the effectiveness of the algorithm.

First of all, step by step method in optimization
process was employed to improve the convergency.
In addition, following techniques were used to im-
prove convergence rate, i.e., techniques of furnish-
ing good initial guesses for analysis using sensi-
tivity information acquired from optimization iter-
ation, and of manipulating optimal convergency cri-
terion motivated from simultaneous technique.

It is anticipated that new algorithm and techni;
ques introduced in this paper will enable opti-
mization to be utilized in solving two and even
three-dimensional problems. Effectiveness of this

model will be verified in the next series of papers.
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