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NEW LM TESTS FOR UNIT ROOTS IN SEASONAL AR
PROCESSES!

YUuJIN Ou' AND BEONG-S00 S0?

ABSTRACT

On the basis of marginal likelihood of the residual vector which is free
of nuisance mean parameters, we propose new Lagrange Multiplier seasonal
unit root tests in seasonal autoregressive process. The limiting null dis-
tribution of the tests is the standardized x?-distribution. A Monte-Carlo
simulation shows the new tests are more powerful than the tests based on
the ordinary least squares (OLS) estimator, especially for large number of
seasons and short time spans.

AMS 2000 subject classifications. Primary 62M10; Secondary 62H15.
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1. INTRODUCTION

We propose a new test of the random walk hypothesis for seasonal time series.
There have been several researches in the literature on this subject such as Dickey
et al. (1984) and Hylleberg et al. (1990). However, most of these tests are
based on the OLS estimator and have complicated non-standard null distributions
depending on the type of mean adjustment and the period of seasonality.

In this paper we propose new Lagrange Multiplier (LM) tests based on a
marginal likelihood of the residual vectors which is free from nuisance mean
parameters. Neyman and Scott (1948) pointed out that when the number of
nuisance parametners grows in proportion to individuals, maximum-likelihood
estimates need not be consistent. Even if they are consistent, they need not be
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efficient. The use of marginal likelihoods based on error contrasts, for the estima-
tion of variance components, has been recommended by Patterson and Thompson
(1971). The method is also known as restricted maximum likelihood (REML).
Kitanidis (1983, 1987) points out that the marginal likelihood is superior in this
context to full, or profile, likelihood. See Chapter 7 of McCullagh and Nelder
(1989) for more details of marginal likelihood.

From these reasons we develop LM tests for seasonal unit roots on the basis
of marginal likelihood. This will be very useful in handling large number of nui-
sance mean parameters whose number grows in proportion to number of seasons.
Specifically, the limiting null distribution of the proposed tests is not influenced
by the mean parameters, and follows a standardized y?-distribution.

The remainder of this paper is organized as follows. Section 2 proposes the
test statistics and investigates asymptotic null distributions of the tests. Section
3 provides critical values for the proposed tests. Section 4 shows results of Monte-
Carlo simulation. Concluding remarks are given in Section 5. All proofs are given
in Appendix.

2. TEST STATISTICS

2.1. The marginal likelihood

We consider a stochastic process y; which is generated by the seasonal AR(1)
process

d
Yt = ;Nzézt + Ut, (21)
Up = pUs—q + €, t=1,...,dT,

where 6;; = 1 if t = 4 (mmod d) and 6;; = 0 if otherwise. Let d denote seasonal lag
that d = 4 for quarterly data and d = 12 for monthly data, y_g.1, y_qi2,---,%0
are initial values, and ¢; are independent and identically distributed with mean
0 and variance Zle 026;t. We are interested in testing for the seasonal random
walk null hypothesis Hy : p = 1 against the stationary alternative Hy : |p| < 1.
The conventional LM statistic is developed with full likelihood with parameters p,
o, .., 03 and d nuisance parameters, u1,. .., ug. However we will use an alterna-
tive likelihood referred to the marginal likelihood which contains only p and o2s.

The marginal likelihood is calculated from the full likelihood, L(p, 0%, ..., 03|u),
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which is presented as follows:

L(p$0%7"'70§i His- .-, .u’d)
IV 1|1/2

F o |- w0V %o wX)], (22)

where Y; = [y,-,yi+d, s Yirr-1d) and X =17 =[1,1,...,1] are T x 1 vectors,
and Y] includes elements which are observed in the i season. Let |- | be the de-
terminant of a matrix. Let Li=(|V; '|*/2)/((v2m)T) exp {—(1/2)(Yi — i X)'V, 7}
(Y; — 1 X)} and L; be the full likelihood of the i** season. Let ¥; — ;X ~
N1 (0, Vi(6:)) where 6; = (p, 02), (Vi) = 02/(1— %) and (Vi)x,s = 2p=21/(1 -
p?), for k,s =1,...,T, where (Vi)k,s denotes the (k, s) element of matrix V;(6;).
We use V; in lieu of V;(6;) as a matter of convenience. Let us now formulate
the marginal likelihood, Ly (p, 02). We will construct a LM test based on a -
free likelihood obtained by integrating out the nuisance parameters from the full
likelihood. Therefore the marginal likelihood is defined as

LM(p,O’%,...,O'g) = /“'/L(p,U%,...,Uﬂ,u1,..., /"d) dprdps - - dpg

d
Z/'“/HLideﬂz'“dud
i=1

= /leHI /de,ud : (2.3)
The first integral can be represented as

!Vl_l|1/2 1
/lem: V)T /exp 51— m XYV "Y1 — mX) pdu
_ |V1—-1|1/2

Vor)T

x/exp{—%YlV Y1+ m Y{VIX — “IX 178 1X}d,u1 (2.4)

—~

Let iy = (X'V'X)"H(X'Vy~ lYl) [20{(1 + y1rr-1)a)/2} + (1 — p)T]/(20+
T(1 - p)), where 1 = (1/T) Zt 1Yi+(t-1)a and the fi; is identical to the gen-
eralized least squares estimate (GLSE) of u. The formula (2.4) can be written
as

| 1]1/2

(\/ﬁ)

exp{—EYlVl ty, + £ 5 (XV1 1X)}
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X / exp {—(“—1“2’1—1)—2-()('1/;%)} duy. (2.5)

The integration part of formula (2.5) is equal to (27)Y2|X'V; 1 X|~1/2 because
_ 52
2m) V2 X'V X |2 /exp {_(_PHQ—MFL)(lel—I)()} dur=1.

Thus, the first integral can be represented as

Vs
(VamT AV X

exp { = ¥ — XYV 0% - w0} (26)

and the nuisance parameter p; is eliminated from the full likelihood, L1 (p, %).
By replicating the integration for y;, i = 2,...,d, we can finally have the marginal
likelihood as the following:

d V12

LM(p,O'%,...,U?i) = —
il;Il (1 /27T)T_1|X’V; 1X|1/2

xexp {~3 (6~ GOV - X} (2D

We note that both f; and [V, 7!|/|X'V;7 1 X|, i =1,...,d are well-defined at p = 1
in (2.3) and (2.7). Now the proposed likelihood has been obtained by integrating
out the nuisance parameters, ui, ..., t4, from the full likelihood.

2.2. The test statistic

On the basis of marginal likelihood, we can construct a score test for the
null hypothesis of seasonally nonstationary time series, Hy : p = 1. First, we
are going to establish a test statistic for each season. Next, we construct the
proposed test statistic by pooling seasonal test statistics. In order to build our test
statistic, let us now derive the score vector and the Fisher information matrix. Let
S (6;) be the score vector for the " season with @ (8;) = [Sf)(ei), Sg)(é’i)] =
[Blg\f[) /0p, Bl%} /802)" and lg\i,l) =In LE\? (p,c?) be the i** marginal log likelihood.
Let J® be the inverse of the Fisher information matrix for the #** individual
)th

with J,(fl)n representing the (m,n)** components of J (), Therefore we obtain the

followings from the direct computation given in Appendix,

2 T

~(i )iy LT—=1 1 ) \Yir@—1)d — ¥ 1

87 = 56) = ——+ 52 { e 1 ) - 2 (Adyi+(t—1)d)2} (2.8)
T =2
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and

; 8
J("') — _ 2.9
where ; = (1,62) and 6% = {1/(T — 1)}231:2(Adyi+(t_1)d)2, Ay = (1 - BY
and B is the usual back shift operator. In this context, we are able to construct
the proposed LM test statistic, tps, from the score vector and the inverse of

Fisher information matrix based on the marginal likelihood, Las(p, 0?). The test
statistic is given by

d d
LS = L3 50,/50
tm = th; = S Jiy . 2.10
M \/Eizl M \/&i=1 1 11 ( )

In the following theorem, we derive the null distribution of the proposed score
test statistic.

THEOREM 2.1. Consider model (2.1). Let {e;} be a sequence of independent
and identically distributed random variables with mean 0 and variance 2;.”:1 026t
Then under the null hypothesis, Ho : p = 1, we have tp — (1/vV2d) {32,
W2(1) —d} as T — oo.

Proor. A proof of Theorem 2.1 is in Appendix. O

Here —%» stands for the convergence in distribution, and W;(-) denotes the stan-
dard Brownian motion. We note that the limiting null distribution is the stan-
dardized x2-distribution and is approximately N(0,1) for large d.

3. CRITICAL VALUES

For fixed d and T, sample critical values of the proposed test statistics are
computed via stochastic simulation with 10,000 replications. The critical values
are tabulated in Table 3.1 for d =2, 4, 12 and T =5, 10, 15, 20, 25, 30, 40, 50,
60, 70, 100 and oo. For the case of oo, we did not simulate but calculate from
the x2-distribution table. We generate data by the model

d d
e =Y wibit + p (yt—d -> m%) +eg (3.1)

with y_g41 = M1, Y—d+2 = d2,...,Y0 = iq and p; ~ N(0,1) for i = 1,...,d.
Furthermore we set e; ~ N(0, Egzl 028) and 02 ~ U(0.5,1.5) fori = 1,...,d.
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TABLE 3.1 Critical values of the test statistic (left 5%)

d\T 5 10 15 20 25 30 40 50 60 70 100 00
2 -123 -1.23 -1.23 -1.22 —-1.22 -1.22 —-1.22 —1.21 —1.21 —1.21 —1.20 —1.20
4 -123 -1.23 -1.23 -1.23 -1.23 -1.22 —-1.22 -1.22 -1.22 —1.22 —-1.22 —1.22
12 -1.30 -1.33 -1.34 -1.35 —-1.36 —1.36 —1.36 —1.37 —1.37 —1.38 —1.38 —1.38

NOTE : Tests for Hy : p =1 in model yr = ys—q + er; er ~ N(0,1); initial values are set such as
Y_d-50 = 0,y_q-50 = 0,...,y—50 = 0; Size of tests = 5%; number of replications = 50,000.

Here U(a, b) stands for a uniform distribution on interval (a,b). Once y; and o2
are generated for each season independently of disturbances, e;, they are fixed
throughout replications.

4. SIMULATION

In this section, we present the results of Monte-Carlo experiments to inves-
tigate finite sample performances of the proposed seasonal unit root test. We
compare the proposed test with the test of Dickey et al. (1984, DHF test here-
after). The DHF test is now most extensively used in the empirical seasonal
time series literature. The experiment examines power performances of the two
seasonal unit root tests for the model (2.1) under the general setup of the null
hypothesis Hy : p = 1 and the alternative that H; : |p| < 1. Table 4.1 and
Table 4.2 show rejection probabilities of the two test statistics with 5% level. We
set as alternative p = 0.99, 0.95, 0.90, 0.80, 0.70, i = 1,...,d for Table 4.1 and
Table 4.2. We consider normal disturbances in Table 4.1, and ARCH errors with
6 = 0.5 for possible serial correlations in Table 4.2.

The simulation results show clearly that the proposed test is more powerful
than the DHF test especially for the seasonal time series models with large number
of seasons d and small time span T' < 20.

5. CONCLUDING REMARKS

We propose new score type seasonal unit root tests for seasonal time series
model. The proposed tests are based on the marginal likelihood which is free
of nuisance mean parameters. The Monte-Carlo simulation results show that
the proposed tests are more powerful than the tests based on the ordinary least
squares estimates especially for short time series with large number of seasons d.
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TABLE 4.1 Rejection probability(%) for normal errors

T=5 T=10 T=20 T =50

d p DHF tam DHF ta DHF 127 DHF tam
4 100 518 5.15 5.49 5.90 5.80 7.28 6.40 8.47
0.99 557 515 5.62 5.95 5.69  6.06 6.21 8.03
095 504 612 540  6.89 7.34 10.34 14.78  24.49
090 5.7 7.30 6.92 10.11 10.91 20.93 38.89 4591
0.80 6.01 10.80 10.71  21.33 25.45 48.02 94.21 83.09
0.70 719 13.07 16.32  30.00 54.53 57.46 99.98  95.78

12 1.00 540 6.82 6.39 8.21 6.77 11.54 7.63 16.25
0.99 4.86 5.69 5.51 6.24 6.21 8.36 7.66 15.55
095 5.06 7.48 6.67 11.75 1113 23.70 33.04 59.77
0.90 5383 10.73 9.97 2284 22.69 48.92 85.57  98.18

0.80 7.03 1541 19.99 49.28 64.35 91.81 100.00 100.00
0.70 9,51 32.01 38.16 75.81 95.63 99.73 100.00 100.00

NOTE : Tests for Ho : p =1 in model y¢ = E?:l wibit + p(yt-a — E?:l 1iGit) + €¢; Yod1 = 1,
Yoars = fiz, ..., Yo = pa and i ~ N(0,1) fori=1,...,d; p = 1.00,0.99,0.95,0.90, 0.80,0.70;
Size of tests = 5%; ex ~ N(0, Zle 026:), 0} ~ U(0.5,1.5) for i = 1,...,d; Once p: and
o? are generated independently of e:, they are fized throughout replications; number of replica-
tions = 10, 000.

TABLE 4.2 Rejection probability(%) for ARCH errors

T=5 T=10 T=20 T =50

d P DHF tam DHF tm DHF tam DHF tym
4 100 5.18 5.15 5.49 5.90 580 7.28 6.40 8.47
0.99 499 5.52 5.52 5.98 5.68 6.81 6.18 10.59
0.95 5.02 6.99 6.09 10.08 6.76 18.01 13.48  49.31
0.90 5.40 9.33 6.55 16.32 10.06 36.90 33.46 75.13
0.80 4.80 10.92 8.49 26.73 21.69 59.58 88.48  93.07
0.70 556 18.18 12.32  40.66 44.37 75.74 99.32 98.15

12 1.00 540 6.82 6.39 8.21 6.77 1154 7.63 16.25
0.99 5.09 6.15 5.08 712 6.02 10.38 8.96 23.37
095 569 10.23 7.76  19.59 11.82  47.65 30.98  97.29
0.90 5,51 15.33 9.80 41.82 19.25 85.11 76.93  99.99
080 615 26.34 14.84 72.76 53.00 98.57 99.96 100.00

0.70 7.01 39.24 27.70 87.10 89.84 99.74 100.00  100.00

NOTE : Tests for Hy : p = 1 in model ys = Ele wibis + p(yt—a — ijl wibie) + et Y—dy1 = pa,
Yodt2 = [2,..., Yo = pa and p; ~ N(0,1) fori=1,...,d; p = 1.00,0.99,0.95,0.90,0.80,0.70;
Size of tests = 5%; er ~ N(O,Zleoféit), o ~ U(0.5,1.5) for i = 1,...,d; Once p; and
o? are generated independently of e:, they are fired throughout replications; number of replica-

tions = 10, 000.
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APPENDIX

Proof of the marginal likelihood and its derivatives

In order to calculate score vector and the Fishger information matrix, we need
to derive the first and second derivatives of lgf[), lj(\z,l) = lnLg\?(p, 0?). Each compo-
nents of the marginal likelihood, formula (2.7), can be represented as the follow-
ings:

i) = (XVIX) XV Y
20 (yi+yi+2(T—1)d) + (1 _ p)Tﬂi
B 20+ T(1 - p) ’
T(yi + Yir (7-1)a — 20i)
(p) = >
9p {20+T(1-p)}
(Ui + Yirr-1)a)

fi(1) = . ,
%/3;1(1) = % {%(yz + Yir(T—1)a) — Tﬂi} ’
v =82

X'V x| = (- T —022)<1 o) +2}

K3

YI(VL'_I _ ‘/i-lX(X,‘/;-—lX)_lX,‘/;-_l)Y

T
1
=— {Z(yi+(t—l)d — PYir—2)a)” + (1= P)Az} 7

fo
i (=2

where A; = (1+ p)y? — (T — (T — 2)p)ji2.
Then we have the first derivatives

9p  2(1+p) 2T - (T-2)p)
T
: Ai 1-— P BA,,
_0_3 {— ;yi+(t—2)d(yi+(t—1)d - pyi+(t—2)d) 5 + (T) o }
and

ay rT-1 1 [&
Bﬁ:=~7%?”+Z%{Z;@HWJM_p%HFﬂd;+u_pph'
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Let 6; = [1, 2] and 62 maximizes the marginal likelihood under Hg : p = 1, then
~ T
57 = (1T = 1) Cip(Adtire-1)a)*-

The second derivatives are obtained as

62l§\i4) 1 (T — 2)2 1 (TL , ,
op _2(1 + p)? + 2(20 + T(1 - p))2 T2 ; Yit(@t-1)d —~ (T - 2)s;
T ( + i - - 2_’i 1- 2A,,;
20 (Ui + Yir(r-1)a — 29 )+ p\ 8 |
T—-(T-2)p 2 ap?
apalgz = it Zyi+(t—2)d(yi+(t—1)d - pyi+(t—2)d) ) + (T) 3 [
K t=2
1w 1_1 1 (Z
aaﬁf T Togd o6 > Wir-1)a — PYir—2a)* + (1 — p)Ai ¢,
t ¢ i \t=2
04i _ 4 2 an TWi + Yirr-1)a — 28i)
ap =Y +(T 2)/"‘1' _2/141 T—(T—Q)p

The expectation of the observed Fisher information is

gl &0 _@-1? |l W | __(T-1\1 o AR T-1
o | 8 dpdo?| 4 )o¥ 902|207

since Y5 E(y?) = {(T+1)(T —2)/2} 0%, E(i+ irr-1)a/2)? = (T +3)/
402, BIT9i(yi+vir (r-1)a)] = T(T + 3)/202, B[S Yit(t-1)a¥i+ -2y = T(T — 1Y/
207 and E[Y]_o(Agyiss-170)%] = E[Y3 €3] = (T — 1)o?.

Proof of Theorem 2.1

Since 62/(T — 1) = 0% + 0,(1) by the law of large numbers and (Yir-(T-1)a —
yi)/(oiv/T — 1) 4, W (1) by the central limit theorem, we have tg\i,l) 4, {W(1)2-
1}/v2 as T — oco. This immediately results in the limiting null distribution of
tar that tay = S°3 9/ -2 (1//2d) L {Wi(1)]2 — 1} as T — oo.
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