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MULTIPLE OUTLIER DETECTION IN LOGISTIC
REGRESSION BY USING INFLUENCE MATRIX!

Gwri HYuN LEE! AND SUNG HYUN PARK?

ABSTRACT

Many procedures are available to identify a single outlier or an isolated
influential point in linear regression and logistic regression. But the detection
of influential points or multiple outliers is more difficult, owing to masking
and swamping problems. The multiple outlier detection methods for logistic
regression have not been studied from the points of direct procedure yet. In
this paper we consider the direct methods for logistic regression by extend-
ing the Pefa and Yohai (1995) influence matrix algorithm. We define the
influence matrix in logistic regression by using Cook’s distance in logistic re-
gression, and test multiple outliers by using the mean shift model. To show
accuracy of the proposed multiple outlier detection algorithm, we simulate
artificial data including multiple outliers with masking and swamping.

AMS 2000 subject classifications. Primary 62J20; Secondary 62J12.

Keywords. Influence matrix, logistic regression, multiple outliers.

1. INTRODUCTION

Many procedures are available to identify a single outlier or an isolated in-
fluential point in linear regression and logistic regression. Beckman and Cook
(1983) and Chatterjee and Hadi (1986) surveyed some of procedures in linear
regression. Pregibon (1981) developed diagnostic measures to aid the analyst in
detecting such observations. But the detection of influential subsets or multiple
outliers is more difficult, owing to masking and swamping problems. The multi-
ple outlier detection methods for linear regression have already been studied from
two points of view, direct procedure and indirect procedure. The direct methods
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use algorithm to isolate outliers and the indirect methods use the results from
robust regression estimates. But the multiple outlier detection methods for lo-
gistic regression have not been studied from the point of direct procedure yet.
In this paper we consider the direct methods for logistic regression by extending
the influence matrix algorithm of Pefia and Yohai (1995). Pefia and Yohai (1995)
suggested a new method to identify influential subsets by looking at the eigenval-
ues of an influence matrix. The matrix is defined as the uncentred covariance of
a set of vectors which represents the effect on the fit of the deletion of each data
point. The matrix is normalized to have the univariate Cook’s distance (Cook,
1979) on the diagonal. We define the influence matrix in logistic regression by
using Cook’s distance in logistic regression, and identify the influential subset of
observations. And then we test outliers by using the mean shift model.

2. REVIEW OF DETECTION OF INFLUENTIAL SUBSETS

In this chapter, we will review the meaning of eigenvector of influence matrix
suggested by Penia and Yohai (1995) briefly. Pefia and Yohai (1995) suggest a
new method to identify influential subsets in linear regression problems. The
procedure uses the eigenstructure of the influence matrix which is defined as the
matrix of uncentred covariances of the effect on the whole data set of deleting
each observation, and normalized to include the univariate Cook statistics on the
diagonal. It is shown that the eigenstructure of the influence matrix is useful
to identify influential subsets and a procedure for detecting influential sets is
proposed. We consider a linear regression model

y =XB+e,

where y is the response vector of dimension n, X is the n x p matrix of regressor
variables with intercept, € is the column vector of n random errors with identical
distribution of N(0,02). Let 8 = (X’X) X'y be the least squares estimate
(LSE) and let B(i) be the LSE when the i** data point is deleted. Then, the
vector t; = § — ¥(;) summarizes the effect on the fit of deleting the observation i
and is given by t; = {e;/(1 ~ hy;)}h;, where J;) to be the new fitted value using
,B(i) and h; is the i column of the H = X(X'X) 1X’. Cook’s distance is given
by t;t;/po?. Let us call T the n x n matrix T = (t1,...,t,) whose columns are
the vectors t;. Then we can define the n x n influence matrix M as

M = ;%T'T, 2.1)
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where s> = 3" | €?/(n —p).

i=1€;
Let r;; be the uncentred correlation coefficient between t; and t;. Then,

mij

’,“,L'j = _T/2—17§’ (2.2)
w5
where m;; is the (¢, j) element of M.
Suppose that there are k groups of influential observations Iy, ...,Ix. Then

(a) if 4,7 € I, then "rijl =1
(this means that the effects on the least squares fit produced by the deletion
of two points in the same set I;, have correlation 1 or —1),

(b) if i € Ip; and j € I with hl # h2, then T35 =0
(this means that the effects produced on the least squares fit by the obser-
vations ¢ and j belonging to different sets are uncorrelated) and

(c) if 4 does not belong to any I, then m;; = 0 for all j
(this means that data points outside these groups have no influence on the

fit).
Now, according to (a) we can split each set Ij, into I} and IZ such that
(1) if 4,j € I}, then r;; = 1 and
(i) if i € I} and j € IZ, then ry; = —1.

Let vi = (v11,.-.,v1n), ..., Vk = (Vk1, - - - , Vkn)' be defined as vy = +m1/ if

jEeL, vp; = /2 if j € I, vn; = +m}/” if j ¢ L. Then, if (a)~(c) hold, by
the equation (2 2)

Lvpivpg, ifi,5 € I}L,
miz = rigmal *mil? = { “1upi(~wy;), ifie Il and j e I,
Ovp,0, ifi €Iy andj ¢ 1.

That is,
VhiVhj, if 1,] € Ihy
mij = cp .
0, ifiorjé¢lIy.

Therefore, the matrix M is
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k
M=) v
=1

and since the v; are orthogonal, and the eigenvectors of M are vi,..., Vg, the
corresponding eigenvalues A1, ..., \; are given by
Ah =:j£:7nﬁ.
1€l

For real data sets, the conditions (a)—(c) do not hold exactly. However, the
masking effects typically due to the presence in the sample of blocks of influential
observations having similar or opposite effects. These blocks are likely to produce
the matrix M with a structure close to that described by (a)—(c).

This suggests the following procedure to identify influential sets:

(a) find the eigenvectors corresponding to the p non-null eigenvalues of the
influence matrix M, and

(b) consider the eigenvectors corresponding to the large eigenvalues, and define
the sets Ijl. and 132- by those components with large positive and negative
weights, respectively.

3. MurtiPLE OUTLIER DETECTION IN LOGISTIC REGRESSION

3.1. Cook’s distance in logistic regression

In this subsection, we show background for the logistic regression model and
define Cook’s distance in the logistic regression.
Given a sample of n independent binomial responses y; ~ B(n;, p;), the loglikeli-
hood funcion for the sample is the sum of individual loglikelihood contributions;

n

6;y) =Y 16i5:) =D _{wis — a(6:) + b(w:)}-
i1

=1

The likelihood function /(;y) is over-specified in @, since there are as many pa-
rameters as observations. Given a set of m explanatory variables X1, Xa, ..., X,
the logistic regression model utilizes the relationship

8 = logit(p) = X,
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as the description of the systematic component of the response y, where p=

(p1,--.,Pn). In terms of the m-dimensional parameter B, we have the loglikeli-
hood function

n n

(XBy) =D UxiBsw) = Y _{yxiB — a(xiB) + b(us)}- (3.1)

=1 i=1

MLE maximizes the equation (3.1) and is a solution to (8/ aB)1 (X,B;y) =0. In
particular, B satisfies the system of equations

n
zﬂ?ij (yi—a(xgﬁ)) =0, i=1,...,m.
i=1

Writing s = y — (XB) = (y — np), the matrix formulation of the likelihood
equations is
X's=X'(y-9)=0.
These equations, although very similar to their normal theory counterparts,
are nonlinear in B , and iterative methods are required to solve them. Typically,
when second derivatives are easy to compute (in the present case —(8/08)X's =

X'VX with V = diag{d(x;8)}), the Newton-Raphson method is employed. This
leads to the iterative scheme

B = Bt + (X'VX) 1Xs, t=0,1,...,%

where both V and s are evaluated at B'. At convergence (t = *), we take
,B = f*, and denote the fitted values n;p; by ;. The estimated variance of y; is
vi; = nipi(1 — ps).

A most useful way to view the iterative process outlined above is the method
of iteratively reweighted least-squares (IRLS). This is obtained by employing the
pseudo-observation vector z¢ = XB* + V~ls, upon which the above equation
becomes

! = (X'VX) I X'VZ'.
At convergence, we have z = X8 + V~ls. Thus we may write the MLE of 8 as
B = (X'VX)“'X'Vz. The Cook’s distance for GLM (Pregibon, 1981; Williams,
1987) is

Ci == p_lhii(l - hii)‘lrf,i, (32)

where h;; is it" diagonal element of H = VV ZX(X’VX)'IX’VU 2 and rf,i is
Pearson residuals.
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3.2. Influence matriz in logistic regression

We defined the influence matrix in a linear regression at Section 2. The
influence matrix is an expansion of Cook’s distance and is uncentred covariance
matrix of the t;. By using Cook’s distance for GLM, we can define t; as

Tpi
tz - ﬁhz;
where h; is i** column of the H = V1/2X(X'VX)~1X'V1/2,

One of the most important types of masking situations occurs when several
observations have similar effects. We shall also say that two observations of the
i and j*h have similar effects when t; ~ At; in logistic regression. To detect
possible sets of influential observations having similar or opposite effects on the
fit, it seems plausible to look at the influence matrix. Let us define T as the n xn

matrix T = (t1,...,t,). Then we define the n x n influence matrix M as
1
M=-TT.
D

3.8. Modified multiple outlier detection algorithm

3.3.1. Identifying sets of outlier candidates: Step 1. A set of candidate outliers is
obtained by analysing the eigenvectors corresponding to the non-null eigenvalues
of the influence matrix M, and by searching in each eigenvector for a set of co-
ordinates with relatively large weights and the same sign. First of all, we explain
the Peha and Yohai (1995) algorithm in linear regression. Then, we suggest
our algorithm for logistic regression by extending it. Their algorithm can be
summarized as follows.

(1) Order the co-ordinates of the eigenvector v;, obtaining Vigy <ot S vy,

and let us call i(y,...,4, the indices of the ordered co-ordinates of the
(1) (n)

eigenvector.

(2) Compute the ratios a; = vi(j)/vi(j'l) forj =mn,...,n—c¢ and b; =

Vi /vi(j +1) for j =1,...,c2. The constants ¢; and ¢y are smaller than n/2

and will be discussed below.
(3) Look for the first jo such that |a;| > &k and ig such that |b;] > k.

(4) If ig > 1 and/or jo > 1, consider the sets Iy = {92y - - 8o} and
Jo = {i(n)si(n-1)s- - »%(jo)} as outlier candidates.
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The choice of ¢; and ¢y is related to the desired breakdown point of the pro-
cedure that will be smaller than min(c;/n,cy/n). In practice, Pena and Yohai
(1995) suggest ¢; and ¢y be close to n/4. The power of the procedure for the
detection of outliers depends on the choice of k. They suggest k£ = 2.5 through
their experience with real and simulated data. This method, however, is conser-
vative and k = 2.5 is not appropriate to logistic regression. So we suggest the
first jo = argmax;a; for j = n—3,n—4,...,n— ¢ and 49 = argmax; b; for
j=4,5,...,c2. Our algorithm can be summarized as follows.

(1*) and (2*) The same as (1) and (2) in the Pefia and Yohai (1995) algo-

rithm.
(3*) Look for the first jo = argmax;a; for j=n—3,n—4,...,n—c; and
'io = argmax; bj for ] = 4,5, ceey C2.

(4*) Consider the sets Jg = {i(n)7i(n—1)ai(n—2)7i(n—3)7 R 77:(.7'0)} and Iy =
{i(l)a §(2),4(3)18(4)» - - - » i(i) } @S outlier candidates.

3.83.2. Checking for outliers: Step 2. We use the mean shift model for checking
outliers. The mean shift model provides a simple method of finding the effect of
multiple deletion,

0 = logit(p) = XB + D¢, (3.3)

where D is the matrix that has a single one in each of its columns, which are
otherwise zero, and m rows with one nonzero element. These m entries specify

the observations that are to have individual parameters or, equivalently, are to
be deleted.

1. Jo (outlier candidates) are tested by using the mean shift model (3.3).
= 8, : new outlier candidates.
Iy (outlier candidates) are tested by using the mean shift model (3.3).
= S2 : new outlier candidates.

2. Let ny and ng be the sizes of the new outlier candidates, S and Ss.

(a) If n; > ng, then declare all observations in S; as outliers, substitute
the observations except S, for full data, and go to Step 1.
= S : outliers, I(l) and J(l, : outlier candidates.
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(b) I} and J§ are tested by using the mean shift model (3.3).
If the t-statistics for outlier candidates are significant, then declare all
observations satisfying significance test as outliers and stop.

3. (a) If ny < mg, then declare all observations in Ss as outliers, substitute
the observations except S, for full data, and go to Step 1.
= S, : outliers, and I2 and J% : outlier candidates.

(b) I2 and J2 are tested by using the mean shift model (3.3).
If the t-statistics for outlier candidates are significant, then declare all
observations satisfying significance test as outliers and stop.

4. If ny; and ng become 0, Jo and Iy are tested by using the mean shift model
at once. If the t-statistics for outlier candidates are significant, then declare
all observations satisfying significance test as outliers and stop.

Petia and Yohai (1995) suggest that Jo and Iy can be tested by the mean shift .
model at once. In logistic regression, their method brings on swamping effect or
decreasing accuracy. In particular, if multiple outliers exist with attaching weight
to one side (y = 0 or y = 1), their method brings on a worse result. So we suggest
that Jy and I, each are tested by the mean shift model. Then, we define that
S; and S; are new outlier candidates. If multiple outliers exist with attaching
weight to one side y = 0, S5 is caused by swamping. In logistic regression, if we
exclude S; from data and repeat Step 1 and Step 2, swamping effect is reduced
and accuracy is increased.

3.4. Examples of multiple outlier detection

3.4.1. Ezample 1. The first example is designed to show the interpretation of
the eigenvectors of the influential matrix in simple masking scheme. We use here
the artificial data generated by Ryan (1996). The model contains 50 data points
in two dimensions (one response and one explanatory variables). We change
from the response variable y = 1 to the response variable y = 0 in the ob-
servations 2,6,11,23,33 and 46 to give multiple outliers. Table 3.1 presents
the eigenvector corresponding to the largest eigenvalue of the influence matrix
(A1 = 3.00325 x 107%). In this case, outliers (2,6,11,23,33,46) have the largest
negative weight. The smallest eigenvector has b, = 1.108788, which corresponds
to ji1) = 2, and bg = 1.503226 with j(;y = 46. This bg = 1.503226 with j;y = 46
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TABLE 3.1 Eigenvectors corresponding to the largest eigenvalue for Example 1

observation 2 11 33 6 23 46 29 37
eigenvector —0.269 —0.243 —-0.243 -0.219 -0.219 -0.197 -—-0.131 -0.131
observation 49 7 14 30 8 38 13 28
eigenvector —0.131 —0.1154 -0.119 -0.119 -0.107 -0.107 —-0.0962 —0.0962
observation 47 12 15 22 34 25 43 40
eigenvector ~0.096 —0.087 —0.087 -0.087 —0.087 —0.078 0.078 —0.070
observation 21 41 39 19 20 32 3 16
eigenvector —0.063 —0.063 —0.057 —0.051 —0.051 0.083 0.093 0.093
observation 35 1 45 27 44 4 9 26
eigenvector  0.093 0.093 0.103 0.114 0.114 0.127 0.127 0.127
observation 36 24 31 48 10 17 18 5

eigenvector  0.127 0.155 0.155 0.155 0.190 0.190 0.190 0.211
observation 50 42

eigenvector  0.211 0.234

TABLE 3.2 t-statistics for Example 1

observation t-statistics for observation

2 —2.0251
6 —1.9049
11 —1.9796
23 —1.9049
33 —-1.9796
46 —-1.7774
is argmax; b; for j = 4,5,. .., cp. Therefore, it has a clear cut-off point at the set

I, ={2,11,33,6,23,46}.

Table 3.2 presents the t-statistics for these points when they are removed from
the least squares fit. This shows that the t-statistic identifies clearly outliers.
In summary, the components of the eigenvector corresponding to the largest
eigenvalues show the relevant structure of the data set, and the relevant set
is automatically selected by the procedure suggested in Section 3.3.

3.4.2. Example 2. In this subsection, we will test the performance of the multiple
outlier detection procedure which we suggested and compare the result of our
procedure with that of robust estimation. In multiple outlier detection for logistic
regression, there is not classic data. So we design an example to have multiple
outliers with masking and swamping. We consider the true model following p = 2
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TABLE 3.3 ,3 and relative efficiency for Example 2

method Bo o B2 Relative efficiency
True model 12.138 —5.342 7.702
Classical ML
method 6.974 —3.443 3.645
Our procedure
by using influence matriz  6.872 —3.390 3.587 3.877
Cantoni and
Ronchetti’s method 0.983 —0.662 0.648 1.008
Crouz and
Haesbroeck’s method 1.002 —0.669 0.654 1.017

independent variables and n = 50. There are multiple outliers in the response
variable y = 0 and y = 1, but the number of outliers in y = 0 is more than that
of outliers in y = 1. The true model is defined as

log (ﬁ) = 6.973 — 3.442x; + 3.645x,.

Then, we change from the response variable y = 0 to the response variable y = 1
in the observations 10, 15,21, 26 and 35 and from the response variable y = 1 to
the response variable y = 0 in the observations 7,16 and 32 to give multiple out-
liers. The automatic procedure suggested in this paper detects multiple outliers
correctly.

For comparison of various methods, we compute the finite sample relative
efficiency (RE), defined as

_ MSE of ML estimator
~ MSE of robust estimator

RE (3.4)

We include the robust estimators from Cantoni and Ronchetti (2001) and Croux
and Haesbroeck (2003). Cantoni and Ronchetti (2001) proposed a robust ap-
proach to inference based on robust deviances that are natural generalization on
quasi-likelihood functions. Croux and Haesbroeck (2003) complemented Bianco
and Yohai (1996) who proposed a highly robust procedure for estimation of the
logistic regression model.

In Figure 3.1, “True model GLM fitted” represents fit by logistic model with
non-contaminated data. “The Model fitted with outliers” represents the fit by
four methods for estimating B with contaminated data. The four methods are
GLM, our procedure, the robust estimate by Cantoni and Ronchetti (2001) and
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F1GURE 3.1 Plots for Example 2.

the robust estimate by Croux and Haesbroeck (2003). In GLM without out-
liers, we detected multiple outliers by using our procedure and we estimated B
from contaminated data except detected multiple outliers. “Cook’s distance”
and “Pearson Residuals” show that the contaminated data set has masking ef-
fect. Table 3.3 presents 8 and ﬁ by using the four methods and relative efficiency.
As shown in Figure 3.1, the fitting by using our procedure is the most similar
one to the true model. In Table 3.3, our procedure maintains high efficiency for
the contaminated data.

4. CONCLUDING REMARKS

In this paper, we suggested the necessity of multiple outlier detection and
multiple outlier detection algorithm. Then, we compared our algorithm with
robust statistical models by using relative efficiency.
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Our algorithm was based on influence matrix. We defined influence matrix in
logistic regression as extending Cook’s distance in logistic regression (Pregibon,
1981). This means that, the influence matrix is expansion of Cook’s distance
and uncentred covariance matrix of the vector t; = § — ¥()- The eigenvalue of
influence matrix explains influence of the arbitrary group and the eigenvector
corresponding to the eigenvalue explains how far observations are included in
that group. We obtained the set of candidate outliers by using relative value of
these eigenvalues and by testing mean shift model.

To show accuracy of multiple outlier detection algorithm in Section 3, we sim-
ulated artificial data including multiple outliers with masking and swamping. In
this result, our procedure detected multiple outliers correctly. Also we compared
our procedure with the robust modelling for inference as Cantoni and Ronchetti
(2001) and Croux and Haesbroeck (2003). We showed that our procedure main-
tains high efficiency for the contaminated data. In some cases, we noted that
the robust modelling for inference is worse than the classical ML method with
contaminated data.

In GLM, multiple outlier detection leaves much to be studied further. Also,
our algorithm is needed to complement many points. First, our algorithm has
to be studied for a real data set. Secondly, we have to show how to change
the accuracy of multiple outlier detection, as the independent variable number p
increases. Thirdly, our study is limited to multiple outlier detection in logistic
regression. So we have to extend our study to multiple outlier detection in GLM.
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